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In the multifractal framework some recent results [Phys. Rev. Lett. 67, 2295 (1991)] on the 
probability distribution functions (pdf) in fully developed turbulence are reviewed, for 
the increments of the velocity field in the inertial range and for transversal gradients. New 
comparisons are also produced, in the same scenario, with clusters of isogradients and 
with pdf evaluated from a numerical simulation of a shell model. The Reynolds dependence 
of the flatness in the multifractal model is discussed. 

I. INTRODUCTION 

It is a common experience that viscous fluids driven by 
external forces can develop instabilities and show chaotic 
behavior.’ The parameter that controls the degree of ran- 
domness is the Reynolds number, i.e., the ratio between 
nonlinear and linear terms in the Navier-Stokes (NS) 
equations. In the limit where the Reynolds number goes to 
infinity one speaks of the fully developed turbulence regime 
(FDT). A theory for FDT is still lacking. Only a few 
advances have been made since the seminal work of Kol- 
mogorov published in 1941 (K41 hereafter).2 

In K41, Kolmogorov made two main assumptions: the 
probability distribution function (pdf) of velocity incre- 
ments at distances r-small compared to the integral scale 
Lo, (ApI= Iu(x)-~(x+r) 1 is isotropic, and the only two 
important parameters necessary to characterize the pdf are 
the viscosity Y and the mean energy dissipation Z. In the 
following we will consider K41 as our ground-state theory, 
without challenging its basis-as could be possible discuss- 
ing the isotropy and universality assumptions (see the 
review’ for a detailed exposition of the main experimental 
tests on these two issues). 

From these two apparently harmless hypotheses Kol- 
mogorov was able to predict one of the most striking ex- 
perimental signatures of FDT: the appearance of an iner- 
tial range where moments of Ap are Y independent with 
scaling: 

((A?)“) a (gr)c(J’), with c(p)=p/3. (1) 

This kind of reasoning has been challenged experimentally 
and theoretically.* It is highly unsatisfactory to assume 
that only the mean energy dissipation enters in ( 1): the 
whole probability distribution of E should play an essential 
role in modeling turbulence features. In order to take into 
account E fluctuations it is possible to generalize relation 
(1) to 

((Ap)J’) a (~J”~)ip’~. (2) 

Under this condition the function c(p) could display a 
nonlinear behavior, according to the r dependency of the E 
probability distribution. This is exactly what is observed 
experimentally.3,4 The bending of c(p) is commonly linked 
with the intermittency of the energy transfer rate from 
large scales to the dissipative scales, which are considered 

constant in the Kolmogorov theory. Looking at one typical 
configuration, one would see large laminar zones where u is 
regular, and narrow very active regions where most of en- 
ergy is dissipated. 

Up to now, although the experiments and numerical 
simulations are not precise enough to measure c(p) expo- 
nents larger than p= 10 or 12, one can safely state that the 
K41 prediction c(p) =p/3 is wrong. How to replace it is 
still an unsolved problem. As we shall show below there 
are a few proposals able to reproduce the correct p depen- 
dence of c(p), even if they remain at a phenomenological 
level. 

Recently,‘-” attention has been turned to the problem 
of pdf’s. 

Experimental pdf’s” for the velocity increments in the 
inertial range show a tendency toward more and more non- 
Gaussian shapes at decreasing distances, while the gradient 
pdf’s display the same behavior at increasing Reynolds 
number. 

Kraichnan,6 recently, advanced the possibility to ex- 
tend for turbulent flows an analytical mapping closure, 
already applied to the Burgers equation. He proposed a 
heuristic form for the stretching function J(so,t) which 
maps the initial gradient, so, at time t=O to that at time C. 
The time evolution of J is given by a nonlinear equation 
that presents a competition between the straining term and 
viscous dissipation. Its stationary solution produces a pure 
exponential tail for the pdf in the limit of infinite Reynolds 
number. However, this prediction is not consistent with 
some experimental data12 which suggest a powerlike be- 
havior of flatness and skewness as a function of Reynolds 
number. 

Starting from Kraichnan ideas, She,’ and subsequently 
She and Orzsag,’ introduced a more refined model by con- 
sidering the different roles played by random eddies and 
small-scale coherent structures in FDT. They used an ex- 
ternal parameter h to model the change of the typical ve- 
locity, vI, at scale I, with respect to the Gaussian initial 
reference field ug characterizing large-scale statistics: 

q(t) -J+)u,. 

In their work suitable approximations of the eddy- 
structure (mean stretching), structure-structure (self- 
stretching), and eddy-eddy (mean dissipation) interaction 
terms are given. Using different h exponents as a function 
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of 1, they were able to reproduce the pdf for velocity incre- 
ments in the inertial range, and the pdf for gradients for 
different Reynolds numbers. 

Another method has been published by Castaing 
et al.,” who proposed a comprehensive theory to predict 
longitudinal gradients (with skewness -#O) and the c(p) 
function. According to their studies, it should be possible 
to obtain a satisfactory agreement with experimental data 
assuming a lognormal distribution for E, the energy trans- 
fer rate at scale r toward smaller scales. In this way-as in 
the She-Orszag theory-one must abandon the self-similar 
structure of Ap moments, producing a weak r dependence 
in UP>. 

Frisch and She’ proposed a simpler theory, closer to 
the original Kolmogorov idea. They use dimensional argu- 
ments to relate fluctuations on small scales to the large- 
scale Gaussian statistic, in both K41 and the beta model.13 

In this paper, we review the results on the pdf for 
transversal gradients (5’) and velocity increments in the 
multifractal scenario produced by an appropriate random 
beta model (RBM).5 We extend to this general case the 
ideas presented in Ref. 9. We show that it is possible to 
obtain a good agreement with two independent sets of nu- 
merical data obtained from direct integration of the 
Navier-Stokes equations,14*” and with pdf’s obtained from 
a shell model of three-dimensional (3-D) turbulence. 1618 

It is not possible to apply the same reasoning to the 
statistics of longitudinal gradients because the latter shows 
some geometrical (incompressibility) and dynamical 
(nonzero skewness) features which are not reproducible by 
any phenomenological model as the RBM. 

We give a Reynolds-dependent expression for the gra- 
dient pdf’s P(S) (normalized to have (S2) = 1) and for the 
pdf’s of velocity differences, P( Ap), in the inertial range. 
Both of them show the correct dependence, respectively, 
on the Reynolds number and on the inertial range distance. 

The paper is organized as follows: in Sets. II and III 
we review the main ideas on this subject as discussed in 
Ref. 5 and we give an explicit expression for the pdf as a 
function of the Reynolds number; in Sec. IV we show a 
new comparison with numerical data from Ref. 15 for the 
cluster of isogradients; in Sec. V we discuss a shell model 
for the energy cascade in 3D1618 and compare our predic- 
tion with numerical data; in Sec. VI are the conclusions. 

il. THE pdf’s IN FRACTALS AND MULTIFRACTALS 

Neglecting the dissipative term and the external forc- 
ing, NS equations are invariant for a simultaneous rescal- 
ing of time and space, in the limit of high Reynolds num- 
ber: 

x-dxo, t4.1-ht o, AF-+~~Ao~, 

where /z is a free parameter and h is the Holder exponent of 
the velocity field. In K41, h is assumed to be constant and 
equal to l/3 in order to satisfy automatically the exact 
relation c(3) = 1.t9 

In order to take into account fluctuations, Parisi and 
Frisch2’ proposed a local scaling invariance. In their ap- 
proach h becomes x dependent and characterizes the 

strength of singularity of the velocity gradient at point x. 
Without entering in subtle mathematical definitions, one 
can relate several quantities in the inertial range to the 
large-scale fluctuating field u. through the dimensional re- 
lation 

A@(x) a uo(r/Lo)h’“‘, (3) 

where now both sides of Eq. (3) are local. For simplicity 
hereafter the integral scale, Lo, will be taken equal to 1. 

According to some commonly assumed arguments,t’21 
but without any solid theoretical ground, the self-similar 
inertial range is produced by a cascade of energy from the 
largest scale, in which the fluid develops instabilities, to the 
smallest scale, where dissipation produces an overall 
smoothing. This energy cascade is assumed to stop when 
the effective Reynolds number Re( r), defined in terms of 
quantities at scale r, becomes of order 1: 

Re(rJ =Ardurd/v-O( l), (4) 

where rd is by constructionthe smallest significant scale of 
the system. It is customary to use this phenomenological 
definition to obtain an explicit expression for the gradient 
s9 

S = Ardv/rd . 

The length r, is itself, in the multifractal scenario, a fluc- 
tuating quantity.22’23 From relations (4) and (3) one ob- 
tains 

rd(h) =(v/u~)~‘(‘+~); (5) 

this means that the strongest singularity in the velocity 
gradients corresponds to extremely small dissipative scales, 
r,. Generally h is expected to run in the interval 0 <h < l/ 
3: for h < 0, in the limit of Re- CO ,24 incompressibility is 
broken, while for h > l/3, due to the relation e,a?h-l, 
there is no cascade of energy toward small scales. 

Noting that the following relation holds: 

it is possible to obtain a closed formula for P(S 1 h), the 
gradient pdf conditioned to the particular value of h, as a 
function of the initial reference field ve. Let us stress that in 
our derivation, like in any other one based on dimensional 
grounds, it is not possible to capture any dynamical or 
geometrical aspects of 3-D turbulence. Therefore we con- 
sider only the absolute value of various observables and 
neglect their (possible) vectorial origins. 

From the previous formula it is easy to derive5v9 an 
expression for P(SI h) starting from the (supposed) 
known pdf of uo, II ( vo) . The latter is usually assumed to be 
Gaussian, both for experimental outcomesto’” and semi- 
theoretical central limit arguments.’ 

Since 

P(Slh) =II(u,) 2 

and 
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FIG. 1. Log-linear plot of the pdf for transversal gradients, P(S), nor- 
malized to have (+S’) = I. The circles are the numerical data taken from 
the direct integration of NS equations of Ref. 14, with Re=lOOO. The 
solid line is the multifractal prediction ( 16), while the dashed, the dotted, 
and the dash-dotted lines are, respectively, the Fractal prediction,’ the 
K41 theory, and a Gaussian case. 

II ( vo) = const exp --7 
mi$ 

we obtain from (6) 

y (l--h)/2 

P(Slh)= 5 0 +hsl+h 

eXP- 2(v3 . (7) 

In order to achieve a description for the small S region one 
has to add to (7) the contribution coming from the lami- 
nar zones. They can be modeled, for every practical pur- 
pose, by a delta function concentrated at S=O. Therefore 
one has 

P,,,(SIh)=P(S[h)+const S(S) (8) 

where the const is chosen such that Ptot has an integral 
correctly normalized to one. 

It is important to emphasize that in any approach de- 
scribed by one exponent, h, like in the K41 case (h = l/3) 
or in the beta model (h =hF),9913 the expression (7) re- 
duces asymptotically to a stretched exponential form 
exp-const 1 SI ’ with t> 1. In a log-linear plot this would 
be more intermittent than a Gaussian reference bell curve, 
but always with the same convexity behavior. This convex- 
ity seems to be in contradiction with the quaIitative feature 
of the experimental and numerical data.‘1*14 

On the other hand the multifractal scenario,s introduc- 
ing in a natural way a nontrivial spectrum of local singu- 
larities, could escape this problem, producing a continuous 
changing in the local stretching exponent with an overall 
final result in quantitative and qualitative agreement with 
data (see Fig. 1). In this circumstance the unconditional 
pdf P(S) is obtained by integrating over the whole range of 
h exponents times the probability, Prd( h) of picking out 
that particular h value.5 The final expression is given by a 
weighted integral over the allowed class of singularities: 

P(S) = j- dh Pr$h)P(S[ h) 

(9) 
where Prd(h) = r,- 3 D’h’p(h) is the probability to have an 
exponent h, expressed-in the multifractal scenario-by a 
set of fractal dimensions D(h) and by a smooth function 
p(h) independent of r. An analytic estimate of the above 
formula is not simple. It is not possible to apply a saddle 
point method even in the limit of y-0. This is due to the 
fact that according to relation (6) one has S-v(h - 1 )/ 
(h+ 1) and therefore the factor in the exponent of Eq. (9) 
is always of order one even in presence of very strong 
energy burst, i.e., hz0. 

Furthermore one has to build up a model which pro- 
duces a closed expression for the unknown function D(h), 
appearing on the left-hand side of (9). In order to do this 
we will use again the well-known random beta model that 
has been very efficient in fitting the experimental c(p) .25,26 
This simple model is also efficient in reproducing the gra- 
dient statistics of two numerical experiments available 
nowadays for the transversal velocity field. 

Ill. pdf’s IN RANDOM BETA MODELS 

The random beta model is a prototype for the phenom- 
enological description of the energy cascade in 3-D FDT. 
It reproduces the process of eddy fragmentation by fixing a 
hierarchy of scales rn=ro2-“, at which the main dynamical 
mechanisms are supposed to happen. In this approach the 
typical velocity difference at scale n is linked to that at 
scale n - 1 through a random process independent of the 
scale, that is, 

A,v= (r,/r,- 1) “3B, 1’3Arn-,v 

and then, iterating until the integral scale ro= 1: 

where fii are independent, identically distributed, random 
variables. 

The choice of their probability distribution ~(8) is 
dictated by ad hoc reasons. First, in order to recuperate a 
final scale invariant distribution one assumes independence 
from the step during the fragmentation process. Second, to 
obtain a weak deviation from the Kolmogorov scaling one 
adopts a bimodal form for ,U (8). These two conditions lead 
to 

~(B)=xks(~--1)+(1-xk)~(P-~oIo), (11) 

where xk represents the probability of having a fi value 
coincide to a Kolmogorov-like scaling, h = l/3, while 1 -xk 
describes the probability to have a stronger intermittent 
region with a local exponent hmin= (log, Do+ 1)/3. The 
prefactor r:‘” in ( 10) together with ( 11) is chosen such 
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FIG. 2. Log-linear plot of the pdf for velocity increments in the inertial 
range P(u,). Here are plotted four cases correspondent to the choices 
rz=2,5, 10, and 15 with a Gaussian reference bell curve (dashedj in order 
to evidence the progressive departure toward more intermittent profiles as 
a function of the decreasing distance (increasing n) in the inertial range. 

that the mean energy ratio E, transferred through contig- 
uous scales, n and n+ 1, is constant along the cascade.25 

Putting xk=O in Eq. ( 11) one recovers the usual beta 
model,13 i.e., /i= (log, PO+ 1)/3 in the whole fluid. In this 
situation the energy dissipation is concentrated in a fractal 
region of dimension 0,=2+3/i. 

From ( 10) and ( 11) it is possible to carry out the 
structure function c(p) and the set of fractal dimensions 
D(h).25 A good agreement with experimental data314 is 
obtained choosing 

x,& and jt?OjO=~-*hmin=O* (12) 

Instead of proceeding in this way and inserting in (9) 
the resulting form for D(h), we follow a more transparent 
path deriving the pdf, P( v,), for the velocity increment v, 
in the inertial range5 directly from ( 10). 

From (10) one realizes that P(v,) can be expressed 
starting from II ( vo> and p(B) : 

p(v,t)= JII(uo)dvoJS(u.-vor~/3~~~~‘3) 

X ;a1 BP @‘ii) @i 9 

where the extra /?, factor multiplying the p(&) density in 
the integral describes the ratio of the total volume occupied 
by the active fluid at step i. Inserting in the above expres- 
sion the form (11) for ,u(/3) one obtains the sum 

P(v,J = ii.o (; ) x;-i( 1 -xk)igY3r,1/3 

X exp ( - Cflg’3r; 2’3vi), (14) 
where C- (2(d)) -t. This suggests that the final P( v,) is 
a superposition of n Gaussians, where n is linked to the r,, 
through the relation n = -log2 r,. 

In Fig. 2 we plot P(v,) for different choices of n. It is 

quite remarkable that, at decreasing r,, they display the 
proper trend, developing more and more intermittent tails. 

Let us stress, once more, that this distortion from the 
initial Gaussian profile of pdf for v. toward an exponential- 
like shape is due to the presence of more than one local 
exponent. Indeed, only the 0 fluctuations break the linear 
origin of relation ( 10) between v, and v,, producing a final 
non-Gaussian pdf. 

In order to go from the pdf for v, to that for the 
gradient S, one notes that the cascade stops at step N where 
the effective Reynolds number becomes order one, 
( vNrN) /Y - 0( 1). In this way it is possible to select, for 
each B’s realization, the appropriate dissipative scale and to 
write for the gradient the following relation: 

S=vN/rN--/r$. (15) 

Inverting ( 15) one expresses N as a function of S, and 
evaluating ( 14) at the correspondent value one obtains 

.q(Swf( l-xk)M ; (1+2mv3 
0 

Xexp( -CV (2+m)/3~(4-m)/3) 
, (16) 

where m=M/N and N(S) =log(S/y)/(2 log 2). 
Once again the K41 case is recovered by considering 

only one term of the sum, M=O, with xk= 1. 
Even in the general case ( 16), since the S dependence 

of N is only logarithmic, there are no dominant terms in 
the sum, precluding any simple theoretical estimate of it. 

Let us stress that in order to compare it with numerical 
data we have not chosen any free parameters using for hmin 
and xk the same values obtained previously from a fit of 
s(P)?26 i.e., h,,=O and xk=7/8. 

In Fig. 1 we have plotted the numerical pdf obtained 
from a direct integration of NS equationsi superimposing 
our fit given from Eq. ( 16). The agreement is quite satis- 
factory, while both the K41 theory and the beta model case 
cannot capture even the convexity of the curve. 

The shape predicted for P(S) is given by a superposi- 
tion of stretched exponentials exp( -ct”) each one charac- 
terized by (r > 1. Despite this, the final curve displays the 
same convexity of a stretched exponential with (w: c.1, and 
this is the main visual difference with any single-exponent 
model, while the global trend differs from other theory”” 
only in the limit of very large deviations. 

Let us remark that the sum (16) is valid only for 
S > v/4 as one can realize from relation ( 15). This is a 
consequence of the fact that the random beta model is able 
to describe only active regions of the fluid, neglecting the 
laminar zones, Sz=O; that is why a S function, centered at 
S=O, has been inserted into Eq. (8). 

In order to put our prediction in a more manageable 
form it is essential to write an explicit expression for P(S) 
normalized to have (S2) = 1. In the multifractal frame- 
work it is possible to show that, provided c( 3) = 1, the 
following relation holds: 

v(S2) -+A, when Re- 60, (17) 
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FIG. 3. Log-linear plot of the normalized pdf for transversal gradients, 
from relation (18), as a function of three different Reynolds numbers 
(Re= lo*, lo’, and 10’). A  is chosen s 1, in order to eliminate nonuni- 
versal effects. It is interesting to note that only by changing Re by some 
order of magnitude is it possible to detect a variation in the pdf tails. 

where A is a nonzero nonuniversal constant. The above 
expression simply means that in the FDT regime the en- 
ergy dissipation Ta Y(S’~) reaches an asymptotic value. 

Let us recall that the integral scale La is set equal to 
one and therefore the large-scale Reynolds number is sim- 
ply expressed by Re( L,) =u~v. Inserting it in (9) and 
taking into account ( 17) one obtains for the normalized 
pdf P(S/(S2) I” =y) the following form: 

P(Y) a 
s 

dh p(h)A &(h),4- ly”fD(h)/2-2 

x~e3[h+D(h)]/4-5/2 

Xexp-y 
l+h Re(3h--1)/2A(l+h)/2 

2 (18) 

At a first glance, the above expression does not seem 
I clearer than (9), however, one can learn many interesting 

things from it. 
First, it is straightforward to realize that in the K41 

case [h= l/3 and D( l/3) =3] every explicit dependence of 
the pdf from the Reynolds number drops out; this is a 
different way to look at the Kolmogorov statement regard- 
ing the uniformity of energy dissipation in real space: in 

I that condition the dissipative scale, nk, would be fixed and 
everything becomes Reynolds independent. 

In any case, unless the probability to find an exponent 
h#l/3 is sensibly different from 0 [that is not the case for 
the parameters choice (12)], the pdf Reynolds dependence 
of (1X) in the limit where Re-i 00 is very weak. In Fig. 3, 
we show a set of curves obtained for different values of 
Reynolds (Re= 102,105,108), and D(h) following from the 
choices ( 12): it is evident that only by changing the Rey- 

I nolds number of several order of magnitude it is possible to 
I detect a notable variation in the pdf shapes. 
I In order to quantify the Reynolds dependence of P(y) 
I given by ( 18) one can look at the flatness in major detail. 

It is straightforward to generalize the reasoning of Ref. 27 

that leads to the estimate (S2)v--rconst when Re- CO, to 
the calculation of the fourth moment of S.23 In fact, one 
has 

S=$a~-lccRe(l-h)/(l+h), (19) 

where the last relation comes from expression (5) connect- 
ing the Reynolds number and the dissipative scale. In the 
limit of Re-, CO, one can apply the usual saddle point es- 
timate: 

tS4> a J dh p(h)Re4(1-h)‘(‘+h) Prd(h). 

Finally the asymptotic scaling for the flatness, K, is given 
by 

K(Re) =(5’4)/(S2)2=ReF, 

with F=O. 135. This result can be considered in good 
agreement with the experimental value F,, 
= (0.35 *0.07)/2 extrapolated from the data collected in 
Ref. 12. Let us note that in the K41 case we would have 
F=O. 

IV. CLUSTERS OF ISOGRADIENTS 

Recently, a new proposal concerning cluster statistics 
to test intermittency of gradient pdf has been suggested.15 
The appearance of clusters of high fluid activity with non- 
uniform probability can be interpreted as a different way of 
defining intermittency. 

This new way of looking at data has been feasible only 
since large numerical simulations were performed. Exper- 
imental results are always a one-dimensional time sequence 
of data, which is possible to translate into spatial measure- 
ments solely via a suitable Taylor approximation; on the 
other hand, in the numerical simulations one can manage 
the whole spatiotemporal fluid history. 

Cluster statistics can be applied to any physical observ- 
ables, either vectors or scalars such as the energy dissipa- 
tion, transversal and longitudinal gradients, or vorticity. 
We deal only with the statistics of the transversal gradient 
field, being the only one that can be considered indepen- 
dent of geometrical or dynamical constraints. 

In the following we use the same clusters definition 
given in Ref. 15, in order to be able to compare their nu- 
merical measured statistics with those obtained using our 
prediction ( 16) as input. 

In Ref. 15 a cluster of a scalar field S(x) is defined as 
the connected region where the field S(x) is greater than a 
threshold a. 

One also introduces the relative volume V(a>/V,,, as 
the ratio between the total number of points belonging to 
the clusters and the total number of points in the volume 
simulation. 

The most significant quantity to be studied is the trans- 
versal gradient ratio S(a)/S,,, versus the relative volume 
V(a)/V,,, as a function of the threshold a. The former is 
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FIO. 4. Log-log plot of isogradient clusters concentration versus the ratio 
of volume occupied. Diamonds are the numerical points from Ref. 15. 
The dotted line corresponds to the multifractal fit obtained inserting (16) 
in (21) and (22); the dashed line is the K41 prevision. 

defined as the total amount of transversal gradient belong- 
ing in clusters with S > a normalized to the value of S in 
the whole volume. 

As a function of a, the above quantities have a trivial 
limit: when a-+0 both of them go to 1, i.e., the total vol- 
ume is occupied by only one large cluster with the whole 
gradient concentrated on it. 

For different degrees of intermittency one has different 
curves: a larger amount of gradients ratio at the same vol- 
ume ratio indicates that the fluid is more intermittent be- 
cause a larger concentration of it is contained in the same 
region. 

Starting from our multifractal result ( 16) one can give 
a prediction for the above-mentioned curve. 

We have 

S(a) .fzSP(S)dS 
tot= J;SP(S)dS ’ S (21) 

where P(S) is directly taken from (16) or from its equiv- 
alent integral expression (9)) and for the volume ratio: 

V(a) J,“P(S)dS 
-T=J;P(S)dS ’ V (22) 

In Fig. 4 we show data taken from a direct numerical 
integration of Navier-Stokes equations” with the above 
prediction superimposed as a function of a, as well as the 
correspondent curve obtained in the K41 framework. The 
agreement with a multifractal choice for the P(S) is very 
good, while the K41 case (dashed line), showing a less 
intermittent trend, clearly fails. 

Here we do not claim that the cluster procedure of 
describing intermittency is an alternative to the more stan- 
dard pdf way. What we would like to underline is that the 
prediction (9) is consistent with data coming from differ- 
ent simulations,‘4*15 and consequently, it could be worth- 
while to look for other possible numerical and experimen- 
tal tests. 

V. A SHELL MODEL 

One of the first ideas proposed in order to grasp the 
qualitative future of the energy cascade in 3-D turbulent 
flows was using simple dynamical models more tractable 
than Navier-Stokes equations.28 The aim is rather obvious: 
by constructing suitable Navier-Stokes approximations 
one might go beyond the phenomenological K41 theory. In 
the best case, one could use this well-understood model as 
a testing ground for theoretical methods and perhaps as a 
font of illuminating thoughts about dynamical aspects of 
turbulence. 

Recently, a shell model attracted new interest and very 
promising results have been obtained both theoretically 
and numerically. 1G18129 

We consider a shell model where the Fourier space is 
divided in N shells equispaced in a logarithmic scale. 

Each shell k, (n= 1,2,...,N) consists of the wave num- 
bers k such that K,2” < k<Ko2”+l. The velocity difference 
over a length scale zk;’ is given by the scalar complex 
variable u,. The energy is E= Z 1 U, 1 2/2 and its power spec- 
trum is E( k,) = ( 1 u, 1 2)/( 2k,). The Navier-Stokes equa- 
tions are thus approximated by 

+G&&-2> +.m,, 9 (23) 

where Y is the viscosity and J’ is a forcing (here on the 
fourth mode). 

There are two main qualitative differences with 
Navier-Stokes equations: 

l k is a scalar (no spatial structures); 
o there are only nearest neighbor interactions among 

shells. 
From demanding energy conservation when Y= f =0, one 
has 

a, = k,, 
k-1 L-2 b,---p,=-2, 

and bl=bN=c1=~2=aN-l=aN=0. The time evolution 
given by (23) exhibits a chaotic behavior on a strange 
attractor in the 2N-dimensional phase space, with a max- 
imum Lyapunov exponent proportional to ~-l’~.l~ Here 
we do not want to enter into much detail about the dy- 
namical analysis and multifractal spectrum of this 
mode1’6717 

Let us just summarize what has been observed in order 
to motivate our interest in it.‘6,‘7,29 

(1) Equations (23) admit, when f=O and Y=O, an 
unstable fixed point given by the Kolmogorov scaling 
u, a k, 1’3. 

(2) The structure function c(p) has been calculated 
from a numerical integration showing intermittency and a 
remarkable agreement with that estimated in real 3-D flu- 
ids. 

(3) There are a few positive Lyapunov exponents re- 
sponsible for the chaotic behavior of the model, while a 
huge amount of them assume quasizero values. 
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VI. CONCLUSIONS 

In this paper we have shown that it is possible to re- 
produce a vast number of statistical features regarding 
both the distribution function of velocity increments in the 
inertial range, and the pdf for transversal gradient in terms 
of the multifractal theory. We predict a Reynolds- 
dependent pdf for velocity gradients in agreement with the 
numerical simulations available up to now. We think that 
one of the most important open problems consists in gen- 
eralizing the random beta model, including also fields with 
skewness not equal to 0 and with nontrivial spatial struc- 
ture. This could be important in order to understand, re- 
spectively, what are the dynamical causes of small-scale 
fluctuations and how fundamental the coherent structures 
are in turbulence. How to include correlations in the frag- 
mentation process is another open problem that could be 
important to obtain a dynamical knowledge of the mech- 
anism at the origin of multifractality. 

The good agreement between data produced with a 
scalar shell model and real turbulent flow suggests that the 
presence of organized structure is not necessary to explain 
either the scaling laws present in FDT or the intermittent 
tails in the pdf of the velocity gradients. 

s/<s2>1/2 

FIG. 5. Log-linear plot of the pdf for gradients in the Yamada-Ghkitani 
shell model.16 The dots with error bars are the results from a numerical 
integration with Re= IO’. The solid line is our multifractal theory, with 
the same choice of parameters used in Ref. 17 to fit the c(p) function; 
dashed curve is the K41 prediction. 

(4) The chaoticity degree, estimated by the instanta- 
neous maximum Lyapunov exponent, seems to be corre- 
lated with the burst in the energy dissipation and with 
instabilities on small scales. 

(5) It seems possible to apply some closure techniques 
to carry out analytically the c(p) function. 
We think that this nontrivial behavior is enough to moti- 
vate some consideration on its own. The fact that most of 
the above-listed features are shared with real turbulent 
flows give to this model an unexpected primary role be- 
tween the possible dynamical approximations of energy 
cascade in 3-D turbulence. In the following we apply the 
same ideas presented for the 3-D velocity field to the set of 
the u, variables. 

In this case a real space representation is obtained via 
an inverse Fourier transform of the u, field. That is, 

N 

u(x,t) = C u,(t)exp(&x) +c.c. (25) 
Pt=O 

and then for the gradient we obtain 

N 

S(x,t) = c iu,(t)k, exp(ikG) +c.c. 
n=O 

(26) 

We have performed a numerical integration of Eqs. (23) 
with N= 19, Y= 1.0 X 10m6, and f = 1.0 x 10e3, that corre- 
spond to Reynolds z 105. In Fig. 5 we show the numerical 
result for the pdf with the K41 case superimposed as well 
as our prediction ( 16) obtained using the same D(h), pre- 
viously applied in fitting the c(p).” The measurements of 
both c(p) and pdf are completely consistent within each 
other in the random beta framework, i.e., the same choice 
for the RBM parameters reproduces both of them. The 
K41 theory, on the other hand, does not work. 
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