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Abstract. The problem of the interplay between normal and anomalous scaling
in turbulent systems stirred by a random forcing with a power-law spectrum is
addressed. We consider both linear and nonlinear systems. As for the linear case,
we study passive scalars advected by a 2d velocity field in the inverse cascade
regime. For the nonlinear case, we review a recent investigation of 3d Navier–
Stokes turbulence, and we present new quantitative results for shell models
of turbulence. We show that to get firm statements, it is necessary to reach
considerably high resolutions due to the presence of unavoidable subleading
terms affecting all correlation functions. All findings support universality of
anomalous scaling for the small-scale fluctuations.
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1. Introduction

The understanding of the small-scale statistics of turbulent systems is a problem of considerable
interest [1]. By turbulent systems, we mean both the dynamics of velocity fields in high-Reynolds
number flows, and the advection of scalar or vector fields by turbulent flows such as, e.g.
temperature or magnetic fields. In the past few years, much progress has been reached both
in experimental [2]–[5] and numerical [6, 7] investigations of turbulent systems. We now have
plenty of observations showing that the following two properties generally hold: first, turbulent
systems are intermittent [1, 5, 8], as quantified by the anomalous scaling of moments of field
increments. Second, the anomalous scaling exponents display universality with respect to the
boundary conditions and to the large-scale forcing mechanisms [8, 9]. Some subtle points arise
when isotropy is broken at large scale by the injection mechanisms [5], [10]–[12]. In that case,
for universality to hold, it is required that anisotropic contributions be subleading with respect
to the isotropic one. However, evidence for universality of both isotropic and anisotropic scaling
exponents has been found [13, 14].

Nonetheless, the mechanisms responsible for anomalous scaling and universality in
turbulent systems are still not fully understood with the remarkable exception of linear problems
such as the passive transport of a field, for which intermittency and universality have been
systematically understood (see [16] for an exhaustive review). In this context, in particular
for the class of Kraichnan models [15], closed equations for the correlation functions can be
derived. These are linear partial differential equations, whose homogeneous solutions (zero
modes) generally exhibit anomalous scaling. On the other hand, the inhomogeneous solutions,
constrained by external forcing, possess dimensional (non-anomalous) scaling. Universality
results then from the decoupling between the zero-mode scaling and the forcing. Remarkably,
the zero modes can be interpreted as statistically preserved structures, i.e. functions that do
not change in time once averaged over the velocity field realizations and particle trajectories.
This allowed for successfully testing the entire picture also for advection by realistic velocity
fields [17, 18], and in the context of shell models for passive transport [19].

On the theoretical side, it is tempting to export the concepts issuing from linear turbulent
systems to nonlinear ones, i.e. to see whether the same mechanisms for anomalous scaling
and universality are at work also in nonlinear hydrodynamic systems such as Navier–Stokes
turbulence. A possible test case to probe universality with respect to the forcing mechanisms is
to study turbulent fluctuations stirred at all scales by a self-similar power-law random forcing.
Indeed, the non-analytical properties of the forcing may alter the energy exchange between the
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turbulent field fluctuations. For instance, in some cases, the energy injection mechanism may
prevail over the energy cascade process, modifying the inertial range physics.

This problem was pioneered by means of renormalization group (RG) methods [20]–[22],
in the late 1970s, for the d-dimensional Navier–Stokes equations. In the RG calculations, for
d = 3, the forcing spectrum is chosen as Ef(k) ∼ k3−y with y playing the role of a small
parameter in perturbative expansions. Unfortunately, the interesting physical case, obtained for
y = 4 and corresponding to the Kolmogorov spectrum for the velocity field, lies in a range
where convergence of the RG expansion is not granted [25]. Notwithstanding extensions of
the RG formalism to y ∼ O(1), values which have been attempted by different approaches
[23, 24], the problem is still open. Recent numerical simulations tried to shed light on this
issue [26, 27] but, because of the limited resolution, their results are not conclusive.

The aim of this paper is to investigate the general issue of the small-scale statistical
properties of linear and nonlinear hydrodynamical systems, in the presence of stirring acting at
all scales with a power-law spectrum. A systematic study of the scaling behaviour by varying the
forcing spectrum allows for the understanding of the interplay of dimensional and anomalous
scaling in turbulent fields.

In section 2, as an instance of linear problems, we consider passive scalars stirred at
all scales by a power-law forcing, and advected by a 2d turbulent velocity field. Our results
confirm the universality scenario originating from the zero-mode picture which predicts two
distinct regimes. (i) Forcing-dominated regime: the scaling of low-order structure functions is
non-anomalous, with exponents dimensionally related to the forcing spectrum; for the higher-
order moments, scaling is anomalous and dominated by the zero modes. (ii) Forcing-subleading
regime: the dimensional scaling related to the balance with the forcing is subleading, at any
order, with respect to the anomalous one, similar to the case of a standard large-scale injection.
Hence, anomalous scaling is observed for any order statistics. A subtle technical point revealed
by the passive scalar case is the existence of many important power-law terms that contribute
to the scaling properties. As clarified in section 2, for both regimes, to disentangle the authentic
scaling behaviours, it is necessary to take into account the leading as well as the subleading
terms. Concerning nonlinear systems, in section 3, we review the numerical study of the
3d Navier–Stokes equations, done in [27], where due to natural limitation in the resolution
only semi-quantitative results were obtained. Then, to overcome this difficulty, we consider
shell models for turbulence. These are nonlinear models that maintain most of the richness
of the original problem but allow for reaching higher Reynolds numbers. Shell model results
coherently fit with the passive scalar and NS ones. Conclusions are given in section 4.

2. Linear dynamics: passive scalar transport

The evolution of a passive scalar field θ advected by an incompressible flow v is governed by
the advection–diffusion equation

∂tθ + v · ∇θ = κ�θ + f , (1)

where κ is the molecular diffusivity. The standard phenomenology is as follows. Scalar
fluctuations are injected at large scale by the source term f ; then, by a cascade mechanism
induced by the advection term, they reach small scales where dissipation takes place balancing
the input, and holding the system in a statistically stationary state.
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Since the problem is passive, it can be studied also with a synthetic velocity field mimicking
some of the features of realistic turbulent flows. Much attention has been recently devoted to
the Kraichnan model [15], where v is a Gaussian, incompressible, homogeneous, isotropic and
δ-correlated in time field of zero mean. The only reminiscence of real turbulent flows is the
existence of a scaling behaviour that, due to the assumed self-similarity, is fixed by a unique
exponent, i.e. 〈(δrv · r̂)2〉 ∼ rξ with 0 < ξ < 2 (where δrv = v(x + r) − v(x)). For the sake of
analytical control, the forcing f is also taken as a Gaussian, homogeneous, isotropic field of
zero mean with correlation function 〈f(r, t)f(0, 0)〉 = δ(t)F(r), where F(r) decays rapidly for
r � Lf , identifying Lf as the large scale of the problem.

Owing to the above simplifying assumptions, a closed equation for the generic p-point
correlator, Cp(r, t) = 〈θ(r1, t)θ(r2, t) . . . θ(rp, t)〉, can be derived. It formally reads

∂tCp = −MpCp + F ⊗ Cp−2, (2)

where F is the forcing spatial correlation defined above, and Mp is a linear differential operator
arising from the diffusion and the advection terms (see [16] for details). The stationary solution
of (2) satisfies the equation MpCp = F ⊗ Cp−2. As usual, a linear equation is solved by the
superposition of the solution of the associated homogeneous equation, MpZp = 0, and the
solution of the inhomogeneous one, which will be denoted as CI

p. In the inertial range of scales
both CI

p and Zp display a scaling behaviour, i.e.

CI
p(λr) ∼ �ζdim

p CI
p(r) and Zp(λr) ∼ λζpZp(r) with r = (r1, . . . , rp), (3)

where the scaling exponents ζdim
p = p(2 − ξ)/2 are fixed by dimensionally matching the inertial

operator with the forcing, whereas the ζp, not constrained by any dimensional requirements, are
independent of the forcing. One is usually interested in the p-point irreducible component
of the correlation function, Cp, which is the structure function Sp(r) = 〈(δrθ)

p〉. Still in
the framework of the Kraichnan model, the zero-mode scaling exponents contributing to Sp

have been calculated perturbatively in [28, 29]. It has been found that ζp < ζdim
p for p > 2, i.e.

the leading contribution to the structure function scaling is anomalous.
The zero-mode dominance scenario explains both the anomalous scaling exponents and

their universality. Indeed the forcing does not enter the definition of Zp, but fixes only the
multiplicative constants in front of CI

p and Zp, necessary to match the large-scale boundary
conditions. This implies that, even though scaling exponents are universal, probability density
functions (PDF) of scalar increments are not. The above picture, based on zero modes, is
now recognized to apply in all linear hydrodynamic problems, as confirmed by investigations
of passive advection by realistic velocity fields [17, 18], and of shell models for passive
transport [19].

Let us now focus on the main issue of this work: the scaling behaviour in the presence of
forcing fluctuations directly injected into the inertial range of scales. We consider the case of
a source term f(r, t) which is a random Gaussian scalar field, with zero mean, white-in-time
and characterized by the spectrum

Ef(k) = πk〈|f(k)|2〉 ∝ k−1+β. (4)

In the following, it is always assumed the presence of ultraviolet and infrared cutoffs for the
forcing, i.e. expression (4) holds only in the range k1 < |k| < k2 of wavenumbers, where k1
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and k2 are of the order of the inverse of the largest scale in the system and of the dissipative
scale, respectively.

Remaining in the framework of the Kraichnan model, equation (2) still holds, and its
stationary solution is again the superposition of the homogeneous solution, Zp, which remains
unchanged (namely, with the same scaling exponents) and of the inhomogeneous one, CI

p, whose
scaling exponents now depend on the slope of the forcing spectrum, β. Indeed by dimensional
reasoning, we have ζdim

p (β) = p(2 − ξ − β)/2.
Two regimes can be identified. If β < 0, the scaling of the inhomogeneous solution is

always subleading with respect to the anomalous one. The scaling exponents measured from
the structure functions are the same as those obtained with the standard large-scale forcing. On
the other hand, for β > 0, there exists a critical order pc such that, for p < pc, ζdim

p (β) � ζp

and, for p > pc, ζp � ζdim
p (β). In other words, the scaling behaviour of the low-order structure

functions is non-anomalous and dominated by the forcing. The appearing of anomalous scaling
for p > pc can be understood due to the fact that ζp as a function of p is concave. Moreover,
it is known numerically [18], and to some degree analytically [30], that in the Kraichnan model the
scaling exponents above a certain order saturate to a finite value, ζ∞, which makes the existence
of a finite pc even more intuitive. Some subtle points may arise for positive β larger than 1.
In such a case, the strong UV components of the forcing spectrum may allow a matching with
zero modes, disregarded for a large-scale forcing [32], exploding at small scales. Finally, the
case β = 0 is marginal, because the exponents ζdim

p coincide with the large-scale prediction, up
to possible logarithmic corrections.

Checking the validity of the above predictions in numerical simulations of a realistic flow
is interesting for two reasons. First, it is a further demonstration, in the Eulerian framework,
of the zero-mode picture for anomalous scaling and universality in linear problems, which
was previously assayed with Lagrangian studies [17]. Secondly, it offers a controlled testing
ground for interpreting some aspects of the nonlinear hydrodynamics which will be considered
in the next section.

As an example of realistic velocity field, we consider two-dimensional incompressible
Navier–Stokes equations in the inverse cascade regime [7, 33, 34]

∂tv + v · ∇v = −∇P + η�v − αv + f v. (5)

The terms on the rhs of equation (5) have the following meaning: P is the pressure field, f v

injects kinetic energy at scale L0, ν�v (where ν is the viscosity) dissipates enstrophy at small
scale and −αv removes energy at the large scales allowing for a statistically stationary state.
In the inverse energy cascade regime, the velocity statistics is self-similar (not-intermittent),
with 〈(δrv · r̂)p〉 ∼ rp/3, but temporal correlations are non-trivial. Moreover, precise numerical
measurements of passive scalars with large-scale forcing [17, 18] have shown that ζ2 = 2/3,
whereas for p > 2 the exponents are anomalous, and saturation is observed for p � 10 with
ζ∞ � 1.4. It is noteworthy that saturation seems to be generic in passive scalars, as found
also in experiments [31]. From a physical point of view, it means that the strongest scalar
fluctuations are statistically dominated by front-like structures, i.e. huge variations of the field
θ at very small scales.

Once a power-law forcing (4) is considered, the predicted dimensional scaling is ζdim
p (β) =

p(2/3 − β)/2. Therefore, the two above-described regimes—statistics dominated by zero
modes or by the forcing—should appear for β < 0 and β > 0, respectively. We performed
three sets of direct numerical simulations (DNS) of equations (1) and (5): for run (a), we
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Figure 1. Instantaneous snapshots of the scalar field θ for runs (a), (b) and
(c); intensities are coded in grey scale. Note that (a) and (b) are qualitatively
very similar, whereas (c) is characterized by richer fluctuations at the small
scales. The three snapshots are obtained by integrating equations (1) and (5)
by means of a standard 2/3-de-aliased pseudospectral code in a doubly periodic
square domain 2π × 2π with 10242 grid points. As for the velocity field, in
equation (5), the viscous term has been replaced by a hyper-viscous term of
order 8 to force at the very small scales. The velocity forcing f v is chosen as a
Gaussian, incompressible, homogeneous, isotropic and δ-correlated in time 2d

field, of zero mean and concentrated around the small scale L0 (of the order of
few grid points). The friction coefficient α is tuned in such a way that energy
is removed at a scale ηfr ∼ ε1/2

v α−3/2 of the order of the box size. In equation
(1), to have a large inertial range, the diffusive term has been replaced by a
bilaplacian with κ tuned to have the dissipative scale rd � L0. As for the scalar,
in run (a), we used a white-in-time, random Gaussian forcing concentrated at
scale Lf of the order of the box size. In runs (b) and (c), we used the forcing
(4) by choosing k1 = 2 and k2 in such a way that k2 � 2π/rd . For the sake of
comparison, we imposed in all runs the same scalar energy input. For each run,
we collected 80 frames separated by about one large-scale eddy turnover time
measured as ηfr/

√
〈v2〉. See [7, 18] for more details on the numerical procedure.

used a standard large-scale forcing; for runs (b) and (c), we considered a forcing as in
equation (4) with β = −0.3 and 0.3, respectively. More details on the DNS are given in
the caption of figure 1, where we show the snapshots of the scalar field θ for all runs. Already at
first sight, it is possible to observe that runs (a) and (b), where the zero modes dominate
over the inhomogeneous solutions at any order, display qualitatively similar features: the
field is organized into large-scale structures or plateaux characterized by a good mixing,
separated by sharp fronts. Differently in run (c), which corresponds to the case of forcing
dominated statistics (with pc � 6), the scalar fluctuations develop a wider range of scales, and
the most evident large-scale plateaux disappear.

To make the above observations more quantitative, we studied the scaling of the structure
functions S2p(r) = 〈(δrθ)

2p〉 (odd orders are zero due to the isotropy of the forcing). For
run (a), we found a very good scaling range of about one decade, which allowed us to
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Figure 2. Log-linear plot of local slopes of the second-order structure function
for the three runs. The dotted straight line indicates the value 2/3. Note that in run
(a) the slopes are constant for about one decade. On the other hand, the slopes
for runs (b) and (c) are non-constant in the entire range. It is worth remarking
that for power-law forcing there are two sources of finite-size effects. The first
is the presence of two power laws, see text. The second is that the scaling in
real space of the forcing two-point correlation is strongly affected by corrections
(induced by the Bessel function) due to fact that we generate the forcing in
Fourier space.

accurately measure ζp up to p ≈ 10–12. The quality of the local slopes and the measured
values agree with previous investigations [18], which were performed with larger statistics and
higher resolution. For the power-law cases, runs (b) and (c), we could not find evidence of a
good scaling as in run (a). This is observed already from the second-order structure function
S2, whose local slope is plotted in figure 2 for the three runs.

We understand the poor scaling behaviour as due to the competition between the scaling
of the anomalous part and the forcing dominated one. This becomes clear by looking at the
scalar flux, �θ(r) ≡ 〈[δrv · r̂](δrθ)

2〉. For this quantity under rather general hypothesis, an exact
analytical prediction can be derived for a generic forcing, through the Yaglom equation [35].
For a power-law forcing f as in (4), we obtain

�θ(r) ≡ 〈[δrv · r̂](δrθ)
2〉 ∼ c1r + c2r

1−β, (6)

where we have kept only the first two leading contributions. It is important to note that
constants c1 and c2, which depend on the space dimension and on the details of the forcing
spectrum, turn out to have opposite signs. In (6), in addition to the standard linear term, there
is the first leading term induced by the forcing (4). As one can see, the critical value β = 0
naturally arises in the flux expression to separate the inertial dominated (β < 0) from the
forcing dominated (β > 0) regime. Indeed, for β < 0, the spectral flux is dominated by the low-
wavenumber components of the forcing spectrum and saturates, in Fourier space, to a constant
value as a function of k. Scalar fluctuations are transferred down-scale via an intermittent
cascade and the statistics is dominated by the anomalous scaling, the forcing contribution even
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Figure 3. Left: structure functions of passive scalar flux variables. Blue crosses,
run (a); green squares, run (b); red circles, run (c). Fits are made in the inertial
range with the expression given by the Yaglom equation (6). Insets: same
analysis is performed for compensated ratios in the case of run (b) (top inset)
and run (c) (bottom inset). We show the best compensation obtained with both
power laws (same symbols as in the body of the figure) in equation (6), and
with only the leading term (dotted lines). Right: the same of left panel for the
third-order moment of the flux variable. For the large-scale forcing we use the
single power-law, r2.4, to fit the data, whereas for the other two cases we used
a power-law superposition of the two terms of equation (7). For all fits with a
power-law superposition, the two terms turns out to have opposite signs. Insets:
compensations with a single (leading) or two power laws for run (b) (top inset)
and run (c) (bottom inset). Here also the best compensation is obtained with two
power laws.

if present at all scales is subleading. For β > 0, the scalar spectral flux no longer saturates to a
constant: the direct input of energy from the forcing mechanism affects inertial range statistics
in a self-similar way, down to the smallest scales where dissipative terms start to be important.

In addition to �θ(r), we also studied the third moment of the flux variable �3
θ(r) =

〈[(δrv · r̂)(δrθ)
2]3〉 whose scaling is anomalous for the large-scale forcing case, i.e. �3

θ(r) ∼ r2.4

(see also [18]). Results are summarized in figure 3.
Concerning the flux �θ(r), for the large-scale case run (a), the scaling is good and

the Yaglom relation, �θ(r) ≈ −2εθr (being εθ the scalar dissipation), holds for about one
decade (figure 3, left panel). On the other hand, for the power-law forced cases, the scaling is
poorer, making the identification of the exponents less trivial. Indeed, a scaling behaviour can
be properly identified only by taking into account both the leading and subleading terms in
equation (6). The third-order moment is affected by the same problem. So that, on the basis of
the relation obtained for �θ, we tried to fit it with the following scaling ansatz:

�3
θ(r) ∼ Ar2.4 + Br3(1−β), (7)

where the exponent 2.4 in the first term is associated with the anomalous contribution as
measured from run (a). Notice that for run (b) the exponent induced by the forcing is
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Figure 4. Top: PDF of scalar increments, δrθ, for runs (a)–(c). For each run,
we plot the PDF for three different separations r inside the inertial range. The
curves have been normalized to have unit variance. The dotted line is a Gaussian
distribution with unit variance for comparison. Bottom: the same but zooming in,
to highlight the core behaviour. Note that for run (c) the PDF’s core approaches
a Gaussian with a weaker, if not absent, dependence of r.

subleading, i.e. 3(1 − β) = 3.9, whereas for run (c) it becomes leading 3(1 − β) = 2.1. The
simple dimensional prediction for the scaling of the high-order moments in the forcing-dominated
regime, see equation (7), can be obtained only under the assumption of a Gaussian forcing. From
the insets of figure 3, it is clear that a well-defined scaling behaviour is recovered only after
having taken into account the two power-law contributions. In all cases, the anomalous scaling
exponents have values in agreement with those obtained for a large-scale forcing, although the
interplay of different power laws, when the the forcing is as (4), makes the identification of
the exponents very difficult even at considerably high resolution.

Due to these difficulties in measuring the exponents, we looked directly at the PDF of
scalar increments P(δrθ). In figure 4, we show plots of normalized PDFs of δrθ for different
choices of the scale r in the inertial range. For runs (a) and (b), the PDFs do not display any
rescaling property at changing the scale r, neither in the core nor in the tails, suggesting
intermittent behaviour in the full statistics. Note also that the PDFs in the two runs are
different (only scaling exponents are universal while PDFs are not). Conversely, for run
(c), where the forcing is dominant, the PDFs display a fairly good rescaling in the core
(which governs the low-order statistics), while the tails still do not collapse. This agrees with
the existence of a critical order, pc, above which anomalous scaling appears even in the
forcing-dominated case. As discussed earlier, all differences associated with the two regimes
should disappear in the high-order statistics, i.e. for p > pc when anomalous scaling exponents
imposed by the zero modes should show up irrespective of the forcing. In testing this point, the
presence of saturation for large p comes into play; indeed it entails that, for large excursions,
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Figure 5. PDF of scalar increments rescaled to test equation (8) with ζ∞ � 1.4
for runs (a)–(c). For plotting purposes, curves of runs (b) and (c) have been
shifted by a factor 103 and 106, respectively.

the PDFs must approach the form [18]

P(δrθ) = rζ∞Q

(
δrθ

θrms

)
1

θrms

, (8)

with θrms =
√

〈θ2〉 and ζ∞ � 1.4. Such a prediction is tested and confirmed by the collapse in
the PDF tails shown in figure 5, which implies that ζ∞ is asymptotically approached independent
of the forcing.

The above results provide support to the validity of the zero-mode picture beyond the
boundaries of the Kraichnan model and in agreement with the Lagrangian investigations [17].

3. Nonlinear systems

Observations from the linear problem strongly indicate that the notions of anomalous scaling
and universality are closely linked. When we enter the nonlinear world, no rigorous reference
theories are available, even if scaling invariant closures were suggested in the past [44]. Here,
we shall rather formulate some working hypothesis suggested by the results from the linear
systems and verify their consistency with two cases studied, namely, 3d Navier–Stokes
turbulence, reviewing the work first presented in [27], and shell models [36] for turbulence.

3.1. The 3d Navier–Stokes problem

In the 3d case, we consider random forcing defined by a two-point correlation function, which
in Fourier space, reads

〈fi(k, t)fj(k
′, t′)〉 ∝ k1−yPij(k)δ(k + k′)δ(t − t′), (9)
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where Pij(k) is the projector assuring incompressibility and the forcing spectrum behaves as
Ef(k) ∼ k3−y. Hereafter, we use the definition y = 4 − β, referring to the classical notation of
the problem as introduced in [20, 21]. Correspondingly, the critical value β = 0, separating the
two regimes in the linear case, is now yc = 4.

The relative importance of the stirring on the small scales can be varied by tuning the
slope value y from y ∼ 0 (meaning strong input at all scales) to y → ∞ (corresponding to
a quasi-large-scale forcing). Also in NS turbulence, a physical insight can be taken from the
behaviour of the energy flux, which is constant through scales up to logarithmic corrections
for the subleading forcing case, y > yc; whereas it becomes a scale-dependent function for
y < yc, overcoming the energy cascade mechanism.

The case of strong input at all scales, y ∼ 0, was originally investigated in [20] by means
of a RG approach, leading to the following expression for the energy spectrum E(k) ∼ k1−2y/3,
in the domain η � k−1 � Lf where η and Lf are the viscous scale and large scale of the system,
respectively. It is worth noticing that such a prediction, which results also from dimensional
analysis [22], leads to the Kolmogorov spectrum E(k) ∼ k−5/3 for y = 4, i.e. quite far from
the perturbative region where the RG calculations are under control. Here we study the same
problems addressed for the linear case, i.e. whether fluctuations are sensitive to the injection
mechanism for any y and if one observes anomalous scaling for y < 4, when the forcing is
dominant. Since, at least with the present knowledge, RG perturbative methods starting at
y ∼ 0 cannot control anomalous corrections, only numerical simulations at finite y values, can
possibly give some answers.

In [26] a first numerical investigation of 3d incompressible Navier–Stokes problem was
performed. The authors made a set of DNS, varying the spectrum slope from y = 3 to 8 at low
Taylor’s Reynolds number Reλ = 22. Without considering the issue of anomalous scaling in
the region y < yc = 4, they mostly concentrated on the cases with y � 4, and ended up with
the conclusion that for y � 4 the properties of the statistics are not universal, but varies with the
forcing spectrum slope. It is however difficult to consider these as conclusive results, because
of the large error bars affecting the data. Later, in [27], another numerical study of the same
problem at a much higher resolution (up to Reλ = 220) has given some support, even if mostly
based on semi-quantitative results, to the scenario drawn in the previous section in the context
of passive transport. In particular, we report here the behaviour of PDFs of longitudinal velocity
increments for two, among the different, runs done in [27], with y = 3.5 and 6. For y = 6 > yc,
as shown in figure 6 (left panel), the usual intermittent behaviour for the PDFs is found:
the curves P(δrv) at different separations r do not rescale one over the other. In contrast, for
y = 3.5 < yc, the PDFs at various scales are almost indistinguishable (see figure 6, right panel):
a signature of the absence of intermittent corrections at least for the core of the distribution. It
is worth noticing that this result is far from trivial, because it coincides with the RG predictions
[20]–[24] in the region where RG calculations are well beyond their range of validity. These
findings, even if qualitative, fit rather well with those of the passive scalar case (see figure 4).

We may try to push forward this indication in the light of the theory for linear systems.
For the 3d Navier–Stokes dynamics, the stationary equations for multi-point correlators
Cp(r, t) ≡ 〈vα1(r1)vα2(r2) . . . vαp

(rp)〉 can be sketched as

�p+1Cp+1 + νDpCp + F2Cp−2 = 0, (10)

where �p+1 is the integro-differential linear operator arising from the inertial and pressure
terms, Dp is the differential operator describing dissipative effects and F2 is the two-point
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Figure 6. Left: PDF of the velocity increments, for y = 6.0, for three separations
r1 = 34η and r2 = 74η in the inertial range, and r3 = 114η in the energy
containing range. Distributions are normalized to have unit variance. Right: the
same as in the left panel, but for the case y = 3.5. The incompressible Navier–
Stokes equations are solved with a second-order hyper-viscous dissipative term
∝ ν�2. Temporal integration has been carried over for about 20–30 large-eddy
turnover times. DNS data refer to 2563 simulations. The range of the forcing,
in Fourier space extends down to the maximum resolved wavenumber.

forcing correlator. Unfortunately, since the hierarchy (10) is unclosed, no straightforward
analytical approach can be done. Even though nothing can be rigorously stated, one may still be
tempted to assume that anomalous scaling is brought about by the inertial operator. However,
the presence of finite-size effects, due to the limited inertial range, in DNS data of 3d Navier–
Stokes simulations [27] provide only a semi-quantitative support to this scenario. As we shall
see in the next section, more quantitative statements can be made in the context of shell models
for turbulence, for which resolution constraints are much less severe.

3.2. Shell models for turbulence

Shell models of turbulence are dynamical systems mimicking Navier–Stokes nonlinear evolution
[36]. Their main advantage relies on the possibility of performing high-Reynolds number
simulations to measure statistical properties, say intermittent corrections, with high accuracy.
The model we use, proposed in [37], is an improved version of the GOY model [38, 39]
(see also [40] for a recent review). The evolution equation is

d

dt
un = i(knu

∗
n−2un−1 + bkn−1u

∗
n−1un+1 + (1 + b)kn−2un+1un+2) − νk2

nun + fn. (11)

The velocity field fluctuation at the wavenumber kn, with kn = 2nk0, is expressed in terms of
the complex variable un; b is a free parameter and ν indicates the viscosity. The number of
shells varies as n = {0, . . . , Nmax}. Remarkably, for large-scale forcing, the structure functions
show anomalous scaling:

Sp(kn) ≡ 〈|un|p〉 ∼ k−ζp

n (12)
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deviating from the dimensional prediction ζp = p/3. Moreover, anomalous scaling exponents
are found to be universal with respect to the forcing, provided it is large scale (see [40]).

We aim to investigate the properties of the model stirred by a white-in-time, Gaussian
field, with zero mean and spectrum

〈|fn|2〉 = f0k
β
n, (13)

with f0 being the forcing intensity. A similar injection mechanism was proposed in [41]
where authors tried to compare the power-law forced shell models with fractal-grid induced
turbulence [43]. To understand the effect of forcing as in (13) let us start with the energy flux,
which obeys an exact equation. Denoting by ĖN = (d/dt)

∑N

n=0〈|un|2/2〉 the time derivative
of the energy content up to the scale N, the energy balance relation can be written as

ĖN + ν

N∑
n=0

k2
n〈|u2

n|〉 = −kN�N +
N∑

n=0

〈|fn|2〉. (14)

In the previous expression, �N = 〈TN〉, where TN is the energy flux through the shell N

defined as

TN = �
{
u∗

Nu∗
N+1uN+2 +

(1 + b)

2
u∗

N−1u
∗
NuN+1

}
. (15)

For the forcing (13) and for ν → 0, we get an exact prediction in the stationary state:

�n = A1k
−1
n + B1k

−1+β
n , (16)

where the constants A1, B1, bound by the equation of motion to have opposite signs, depend on
the forcing details (f0, β) and on the integral wavenumber k0. At this level, where everything
is exact, we see that when β approaches the critical value (β = 0), a large number of shells
is needed to distinguish leading terms from subleading ones in the third-order moment. In
our runs, the choice of a large value for Nmax(=40) allows us to have good control of such
effects.

Similar to the NS case (10), we can write the unclosed hierarchy for the multi-point
correlators of shell variables:

d

dt
Cp(n) = Mp+1(n, n′)Cp+1(n

′) + F2(n, n′)Cp−2(n
′), (17)

where Cp(n) = 〈un1un2 . . . unp
〉 is the generic correlation function of order p, Mp+1(n, n′)

is the linear operator arising from the inertial terms, and F2(n, n′) is the two-point forcing
operator. The main difference with the case of passive scalar transport, as pointed out in the
previous subsection, is that now the system (17) is not closed, i.e. we have more unknowns
than equations. Without any ambition of a rigorous approach, we may imagine that the general
solution is characterized by two terms. The first, CI

p, given by the dimensional matching between
the inertial operator and the forcing operator,

Mp+1(n, n′)CI
p+1(n

′) = F2(n, n′)CI
p−2(n

′). (18)
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Figure 7. Left: Shell fluxes measured in the presence of a power-law forcing. In
our runs, we adopted the following choice of parameters: b = −0.4, ν = 10−12,
Nmax = 40. For the random forcing, acting on all shells of the inertial range,
we chose the following values of β: β = 0.3 (green squares), β = −0.15 (red
circles). Fits are made with a superposition of two power-law contributions, in
agreement with (16). Insets: compensation with the leading power law (dotted)
or with two power laws for β = 0.3 (bottom inset) and β = −0.15 (top inset).
Right: same as left panel but for the second-order flux moment, to be compared
with (20). Also here the two power-laws terms have opposite signs.

The second, Zp, associated with a ‘zero mode’ of the inertial operator, namely a solution
of the homogeneous equation, Mp+1(n, n′)Zp+1(n

′) = 0. Here, as for the linear problem, the
non-homogeneous terms are the only contributions depending on the forcing, whereas the
homogeneous ones, dimensionally unconstrained, may show anomalous scaling. In particular,
for the structure functions Sp(kn), we have

Sp(kn) ∼ k−ζp

n + k
−ζdim

p (β)

n , (19)

where ζdim
p (β) = p/3(1 − β). This implies the following behaviour for the second-order moment

of the flux (equivalent to the sixth-order structure function):

�2
n = 〈T 2

n 〉 = A2k
−1.8
n + B2k

2/3(β−1)
n , (20)

where the power 1.8 coincides with the anomalous exponent measured for sixth-order structure
function with a large-scale forcing, and the value 2/3(β − 1) comes from the dimensional
prediction (18).

In figure 7 the first and second moments of the flux variables are shown for both the
subleading and dominant forcing with β = −0.15 and 0.3, respectively. It is easy to see that
to get a good agreement of the numerical results with the prediction (20), both the leading
and the subleading power laws have to be taken into account. For both cases with β = 0.3
and −0.15, at least for the order of the statistics we could reach, the anomalous scaling
exponents have values in agreement with those found for a large-scale forcing, supporting the
universality scenario.
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4. Conclusions

We have discussed the problem of small-scale fluctuations in turbulent systems stirred at all
scales by a power-law forcing. The main question in our study concerns anomalous scaling and
universality of scaling exponents.

For linear systems, i.e. passive transport, we find clear evidence for the universality of
anomalous fluctuations and our results fit well in the zero-mode scenario. In the regime in
which forcing is subleading, anomalous scaling is recovered in quantitative agreement with the
case of large-scale forcing. In the forcing-dominated regime, the dimensional scaling imposed
by the injection mechanism overwhelms the anomalous fluctuations of low-order moments.
Nevertheless, anomalous scaling shows up again for high enough moments, independent of the
forcing spectrum slope, as confirmed by the existence of a unique saturation exponent in all
regimes.

The results obtained for nonlinear turbulent systems point in the same direction. Indeed,
both the semi-quantitative results obtained in the context of 3d Navier–Stokes turbulence and
those more quantitative issuing from the investigation of the shell models are compatible with
the linear systems scenario for universality. However, in the presence of power-law forcing
acting in the turbulent energy cascade range, as shown both in the linear and nonlinear cases,
scaling properties are strongly spoiled by the beating of leading and subleading terms. This
effect is particularly strong due to cancellations induced by different signed pre-factors in the
power-law terms.

Strong cancellation effects, which apparently are a mere technical question, may lead
to misinterpretation in analysing data. We wonder, for example, if the observed multifractal
behaviour in the one-dimensional Burgers equation stirred by a power-law forcing might be a
spurious effect [42].

We conclude by noticing that other possible tests of universality in shell models and
Navier–Stokes equations are based on the comparison between decaying and forced properties
[40, 45, 46].
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