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Intermittency in turbulence: Computing the scaling exponents in shell models
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We discuss a stochastic closure for the equation of motion satisfied by multiscale correlation functions in the
framework of shell models of turbulence. We present a plausible closure scheme to calculate the anomalous
scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We
present an explicit calculation for fifth-order scaling exponent by varying the free parameter entering in the
nonlinear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar
provides a connection between the concept of zero-modes and time-dependent cascade processes.
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[. INTRODUCTION motion provide a relation among ttimfinite) sets of simul-
taneous correlation functior®™(x;,X,, . . . Xp):
Since the fundamental work by Kolmogorov, it has been g

recognized that a consistent theory for the statistical proper- (n) (n+1)

. o . . 0=—C"™(xq,X, ... X, =TI[C X1,X2, -« Xp) 1,
ties of turbulence should quantitatively explain intermittency. atC XX n) =TT (% ]

In the last ten years many important steps have been taken to (1)

provide a consistent picture of intermittency in turbulence. , .

First, experimental measurements and a new systematic w&y/1€ré we have assumed stationarity and witive denote

to analyze data have shown the universal feature of intermiti-! N mtegrodl_fferentlal linear operator derivable explicitly
tency[1,2]. Second, a well-defined theory has been propose Orl?otrhEr:ii\r/:re]::r?tﬂf)edseIe(?r?stgmusi.valent of the above hier-
to compute anomalous scaling for a clas$iméar problems, . quiIve .

) . . archy is closed, order by order in the correlation func-
i.e., the case of Kraichnan passive scdl@k In the latter

h tion of d ided a th tical f tions, allowing for a perturbative calculation of some
case, the notion atero modeprovided a theoretical lrame- oy 4jitic | properties. In the full Navier-Stokes problem

work for many fundamental properties of intermittency. Yet, one can show that Eqgl) do not form a closed set of
we are still looking for defining a suitable strategy for a oqyations, rather it should be considered as a constraint
quantitative computation of intermittency in the full nonlin- ¢4, the complete solution. Actually, the fundamental
ear problem, namely, the Navier-Stokes equations. The proRyyantities for studying intermittency in turbulence
lem of anomalous scaling must be divided into two stepsjnyolve also temporal information from multitime
First, we need to clean it from all unwanted difficulties, try- correlation functions  C™M(Xq,t1i X, to + . Xnoth)

ing to focus on the main physical mechanism leading t0=<Ui1(let1)Ui2(X21t2)' . 'Uin(thn))- Namely, we need to
small-scale intermittency and to its connections with the,,qk for the solution of the problem

nonlinear structure of the equation of motion. This is the

main goal of this paper. We show that the anomalous scaling 9K L
of small-scale velocity fluctuations of a shell model of tur- mc(n)(xlvtl;XZatz; o Xt =2[C],
bulence can be derived from the equation of motion. The ! K ?)
result is based on a stochastic closure. A second, more am-

bitious goal, is to extend this result to the full complexity of \ith k<n and3 is a functional of the time-dependent cor-
Navier-Stokes equationg. Some comments on the latter proba|ation functions of orden+ 1 depending om+ 1 velocity
lem are also proposed in the conclusions. fields atn different times. The fundamental question we are
Let us make a few general comments on the nature of thgycing is which are, if any, the physical informations we
problem we are facing. We are interested in theiversal  ghould use in order teolveEq. (2). In some broad sense, not
features of the statistical properties of the velocity fieldbeing able to solve Eq(2) by any kind of “brute force”
v(xt) in a homogeneous and isotropic turbulent flow. Ex-attempt, we still need to understand which are the correct
perimental data and theoretical ideas suggest that thesgiqer parameters” we should consider to find out a system-
universal properties are related to veIocit_y fluctuationsgic way to compute a solution of E¢R).
at scales much smaller than the energy input sdale e argue that a strategy to compute the solutions of the
More precisely, we want to compute the simultaneousyyititime hierarchy(2) may be outlined by first finding a
multipoint  correlation ~ functions C™(x;,x,, ... X))  “physically consistent” solution for the simultaneous hierar-
=(vi, (X, )vi,(X2,t), ..., ... pj (% ,1)) for scale separa-  chy (1) which can be used as the starting point for successive
tions |x;—x;| much smaller tharL.. Our task must be per- approximations. By physically consistent we mean that the
formed by using the Navier-Stokes equations. Equations o$olution should respect the phenomenological constraints
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imposed by the Navier-Stokes equations and in particular bjirst attempt to calculate the fifth-order scaling exponents by
its time-space scaling properties. This is the main idea purvarying the values of the free parameter in the shell model.
sued in this paper. More precisely, we will discuss how farConclusions will follow in Sec. V.

we can provide a quantitative computation of intermittency

based on the following three main poin¢s: we only use the Il. TIME-DEPENDENT RANDOM

constraints coming from the simultaneous E(s; (ii) we MULTIPLICATIVE PROCESS

look for the solutions of Eq(l) by assuming that the out-of-

equilibrium statistical properties of the velocity field can be S .
obtained by a suitable time-dependent stochastic procesg]UIJ['p“Cat'Ve process(TIRihrflP) [8]. we lntroduce.a S.Et of
réference scales,=¢,2" ", and a set of velocity incre-

iii) we shall restrict ourselves to nonlinear shell models L
El L] ments at scales,,: §,v~v(x+<€,)—v(x). The basic idea

Having discussed in details the motivation of pdint let of randomtime-independenultiplicative process is to as-
us briefly comment on poiriti). Random multiplicative pro- sume that statistical properties 8fv can be obtained by

cesses have been often used in literature as a simple math-
ematical tool to describe anomalous scaling properties of tur-
bulent flows[5]. Only a few attempts have successfully
linked cascade-multiplicative process with the structure o
the equation of motiof6]. Recently, the concept of random
multiplicative process has been enlarged by including non
trivial time dynamicg7,8]. In particular, the choice of time
dynamics can be done in order to satisfy the Navier-Stoke
temporal scalingin a Lagrangian reference frameMore-
over, it has been shown that time dynamics affects, in a no

trivial way, also the spatial scaling @™ (x;,%,, . .. Xp). :
Our strategy is to employ the statistical constraint of time—mOdel.Of turbulenc_e has been preserjed Despite the suc-
cess in reproducing the cascade phenomenology, time-

dependent random multiplicative process to look for a solu- T
tion of Egs.(1). The theory of time-dependent random mul- independent multiplicative process cannot capture the subtle

tiplicative process is in its infancy. Only few exact results complexity of the spatial and temporal behavior of Navier-

have been obtained so far. One can wonder why we need SatOkES eﬂquua}:;gggg a Ig:r?;?;t?éin r;fséﬁgﬁz fr??mfﬁ; exk-in d
time-dependent stochastic process as a tool to describe eq?}]‘p ’

Let us first review the main ingredients of time-dependent

S 1V =An+1000, (©)

1WhereAi are i.i.d. (independent identically distributgdan-
dom variables with a time-independent—bare— probability
P(A). Time-independent multiplicative process as 8.
has been widely used in the past to mimics the spatial distri-
Pution of velocity fluctuations in turbulence and the multi-
ractal energy dissipation measyre. Recently, also an at-
Faempt to match the stochastic multiplicative model with the
eterministic structure of the equation of motion of a shell

time correlation functions. The answer is that the shape of°"’ ‘5“’U>| are weltl_ rep,r;duc[el%] OQI%/ asyrglptothall)t/h f(t)r
the correlation functions is strongly dependent on the tim arge-scale separalions, >n - |Ne problem 1S tha
dynamics9]. The hope is that, by using the dynamical Scal_S|mple tlme—mdependent ral_qdom muItlphcayve processes do
ing required by the Navier-Stokes equations, we can alread ot take into account the time dynamics, i.e., they are not

obtain a good approximation to the real solutions. Finally, Wef_onﬁtramed by lthe eqfutz_;\tlon dOf mO(thOﬂi T? o;]/er(;_ome tl?.'sl.d'f'
want to comment on pointiii ). Shell models provide the Icully, a new class of ime-dependent stochastic multiplica-

simplest model to check our strategy and to compare oulijve_proc.ess(TRMP) have been propose[di,B]_. Basically,

physical ideas with clean numerical simulations in thethe idea is to mimic t_he temporal con;tramts imposed by the

asymptotic regime of large Reynolds numbers. structure of the Navier-Stokes equatiodg; ~vdv, by re-
Even with the approximations defined in poitfts—iii ) quiring that the multiplicative structur@) is satisfied for the

the problem of computing the universal anomalous scaling iﬁalngom t|me mtervab—nﬂd:{’n/f(inv). T\?Vbu”d the tﬁmpo—
turbulence is equivalent to solving a functional equation, i.e./@ dynamics we proceed as follows. We extract the instan-

each Eq(1) defines, for any order, a constraint for the prob_tan.eous mU|t'.p|'eA“’ cqnnectmg the amplitudes of t.WO Ve
ability distribution. We will limit ourselves to the lowest, locity fluctuations at adjacent scalefw = A 6,10, with a
nontrivial, order such as to be able to push the calculatiof§Ven ProbabilityP(A), independent from the scal, , and
analytically as much as possible. we keep it cor_15tant for a tlme intervil,t+ 7], with 7,
The paper is organized in the following way. In Sec. Il we = ¢n/(nv) being the local instantaneous eddy-turn-over
briefly recall the basic properties of time-dependent randoriiMe- Thus, for each scalg,, we introduce a time-dependent
multiplicative process. In Sec. Ill we address the problem of@ndom pr'ocesAn(tz th'Ch IS plecewise constant for a ran-
anomalous scaling in Kraichnan shell models of passive scglom time interva[ t{?,t{0+ 7], if t\9 is the time of thekth
lars. There, we present a rederivation in the framework ofump at scalen. The corresponding velocity field at scale
stochastic closure of an exact result for the anomalous scal the time intervak( <t<t{¥+r,, is given by the simple
ing of fourth-order structure function. Thus, we are able tomultiplicative rule:
connect the mathematical notion zgro modesvith the cas-
cade mechanisrdescribed by the time-dependent multipli- Syv (1) =An(1) 8,0 (t59). @
cative process. In Sec. IV we extend the stochastic closure
used for the passive scalar case to the fully nonlinear mode¥Vhat is important to notice is that at each jumping time
We discuss at length both similarities and differences bet(™,t{?, ...t ... only the velocity field at the corre-
tween the two cases and we present, to our knowledge, tteponding shelh is updated, i.e., information across different
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scales propagates with a finite speed. In this way we repravhere E,=( 6,65 )=EkS 2, i.e., the second-order scaling
duce the phenomenology of the nonlinear evolution ofexponent is given by (2)=2—&. The above equation can
Navier-Stokes dynamicstv>vdv. Multipliers at different  be elegantly rewritten in the operatorial form:

scales develop correlations through the time dependency.

From now on, we will denote with-- averages with respect Pra=Zngn'q'Pnra + KDngnrqr Prrgr + Fog: (7)
to the stochastic process and with- -) averages over the o )
chaotic deterministic dynamics of the shell model. where we have explicitly separated the inertiafrom the

A more detailed numerical and theoretical analysis of thedissipativeD part of the linear operator and where the non-
statistical properties of TRMP can be found in Re&}. The homogeneous term composed by the for'cmg and py th.e
possibility to reproduce theingle-timestatistical properties Second-order passive structure functions is summarized in

of TRMP by a Gibbs-like measure has also been recentijh€ expressiod,q. ,
discussed in Ref9]. It is useful to highlight in the two-scale correlation func-
tion P, . the dependency from the scale separations by

lIl. TRMP AND THE KRAICHNAN MODEL introducing the set of variables, :

We start our work defining the relationship between the Prnt1=CiPnn- ®
Kraichnan shell model for passive scalar and time-depende

random multiplicative process. We first review the model anc?_ﬁrom basic scaling principle one may argue that the

see how the computation of the anomalous exponents can tz)iesymptotic scaling behavior is given by the so-called fusion
i L X A ililes[15,16,7,1Q:
rigorously done in this case. The model is defined as follows

[11,12. Passive increments are described on a discrete sub- (0|
set of wave numbertshelly k,=ko\", by a complex vari- Prnsi~—— (10", 11—, 9)
able 6,,(t), which satisfy the equationsi& 1,2, ... N) (16n]%)
d which means thatC,~C.k¢ 2 for | positive and large
a+xkﬁ On(t)=i[Cnbr, (H)UX (1) + b0 (tul_ ()] enough. Similarly, fol negative, we may write
+ o1af (1), (5) Pnn-1=DiPnn, (10)

where the star denotes complex conjugation dng where now the asymptotic behavior Bf feels the fourth-

. . — 72 —
—K,,C,=k,, , are chosen such as to impose energy conse2rder scaling behaviorD,~D..k, .(g P4 for 1 large
vation in the zero diffusivity limit. The intershell ratio must €nough, withp,=H(4)—2H(2) being the anomaly of the
be taken such as>1. Boundary conditions are defined as fourth-order scaling exponent. The two sets of varialiles
Up= 0,=0. The forcing terms,,f(t) is Gaussian and delta and C_|2are not independent. By mt_roducmg the notation,
correlated:(f(t)f(t'))=F,8(t—t'). It acts only on the first x=\"2 and R=\"4, one may rewrite both of thelm as a
shell. Kraichnan models of passive advection assume thdtnction of a new set of variabld§ defined a<,=I')x" and
each velocity variableu,(t) is a complex Gaussian and D1=T'/(xR)" [12]. The assumption that fusion rules are sat-
white-in-time  stochastic process, with a variance whichiSfied is the only crucial point in computing the zero modes.
scales as{Up(t)u* (t'))=8(t—t') Somdm, dm=k.t. The The existence of fusion rules implies that correlation func-
cross correlation between the advecting velocity variable§Ons show scaling in the inertial range.
and the passive variable can be rewritten in terms of passive 1h€ infinite set of equations for the inertial-rangero-
correlations only, when the velocity field is a white-in-time M0d€0f EQ. (6), Znqm:q'Pmq: =0, can be rewritten in the
Gaussian variable. Thus, all equations for all passive strudo!lowing form:

ture functions are closed4,11,13. The goal is to calculate n _ _
the scaling exponents(p) of the pth order passive structure AoXR)+Bos(x,R)IT1=0, q=n, (1
functions as defined by AL(X,R)+B11(x,RIT1+B1 X, R)T,=0, n=q+1,

(0,JPy~ k1P 12

By 1(X,R)I',_1+B,(X,R)I',+B X,R)I',+1=0,
We concentrate on the nonperturbative analytic calculation " 1R -2+ B RITnt B a (R

of the fourth-order structure functiorP,,=((6,6})?) n>q+1, (13
ockmg4 (the lowest order with nontrivial anomalous scaling
The closed equation satisfied Byq=((0,6%)(640%)) is where the function#\;,A4,B; ; are known functions at and

R=Af4. The computation of the zero modes means to find
P o=(8 E-+6 EVF1— (K24 K2P.. +1—P c2d.[(1 out the number® andI’; which solves Egs(11), (12), and
9= (O1nEn 01 F1 = se(kn k) Pog t{ = PrgCrl (13). Let us remark that for any given total number of shells,
+8qne1) FAETH (L4 8 n-1) ]+ Pri1gCidn(1+ 8,,) N, we haveN+1 equations andi+2 unknowns which are
) given by thel’; for i=1,... N+1 plus the parameter di-
+Pho1gb7dn-1(1+ 64 0) +(qen)}, (6)  rectly affected by the fourth-order anomalous exponent
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R(p4). Thus, it is impossible to find a solution unless somededuce that,, is not a random time and should be chosen as
extra information is added to our problem. This information r,=ké 2. One can show that such a class of TRMP predicts
can be found by observing that for largethe functionsB  a nontrivial behavior of the fusion rules coefficienis,D, .

appearing in Eq(13) become constants independent of bothMoreover, the detailed behavior of the fusion rules coeffi-

x andR. In the limit of largen, defining cients are determined by the spatial intermittency, i.e., the
constraintd,6~vd6f between temporal and spatial scalings

Zn:Fn+l induced by the Navier-Stokes structure in a Lagrangian ref-

r,”’ erence frame is satisfied. This is the crucial point we need to

use to solve our problem. We can summarize our discussion
in the following way. TRMP provides us with a relationship
7 —Pp(Z 14 between each fusion rule coefficie@t, D, and the anoma-
nt1=P(Zp), (14 , L .
lous exponents. In this way we are building a stochastic clo-

where the explicit form ofb is given in Ref[12]. Map(14) ~ Sure for Egs(11), (12), and (13). Moreover, the time and
possesses a fixed poiit =1 for large shell indesn which ~ SPatial dependencies of the stochastic process are consistent

corresponds to the fact thEt, reaches a plateau for large with the structure of the deterministic equation of motion.
i.e., to the fact that fusion rules are asymptotically satisfiedVeé want to show here that besides the exact method dis-
The crucial point is to observe that is a stable fixed point cussed before the stochastic closure through the TRMP also

one finds that Eq(13) can be rewritten as

for the inverse ofb, i.e., for works. , -
In the following we assume that the—bare—probability
Z=d"Yz.,). (15 P(A) is log normal. We are aware that log-normal probabil-

ity distributions are not consistent with the anomalous scal-
The stability ofZ* for Eq. (15) allows us to compute the ing of turbulent flows or shell models for large orders, even
values ofZ, for smalln, i.e., we start withZ,,=1 and then for the case of the Kraichnan shell model. However as far as
we computeZ,, by using Eq.(13) up tom=2. In this way we are interested, to compuki(p) for rather smallp, log
we can comput&, as a function oR andx. Thus Eqs(11) normality is a reasonable approximation which simplifies the

and(12) become analytical computations. Because we know th§{2)=2
— ¢, the probability distributionP(A) depends only on a
Ao(X,R) +Bo(x,R)I"1 =0, (16 single unknown parameter which describes the variance of

the log-normal fluctuations. By using the exact solution pre-
1 viously discussed, for each value éfwe can compute the
17) value of H(4). Thus for each value ot we can fix the

Equationg(16) and(17) have two unknowns, namely, and parameters of the log-normal distribution in order to repro-

R, for two equations and, therefore, one can find a solutiondUce the anomalous exponent. We can next simulate the
The analytical solution turns out to be in perfect agreemenf RMP numerically and compute the value of the fusion rules

with the numerics both for the fourth-order object described@efficientsl’;. The most sensitive test is made by compar-

here[12] and for higher-order correlatiorfd3]. This ends [Ng the prediction on the asymptotic valuesIgffor largel

the review of the analytical results previously obtained onWhich we denote by.. (notice thatl’o=1 by definitior) as

the model. extracted from the computation of the zero mode and from

The solution of the Kraichnan shell model for passivethe TRMP. . .
scalar provides us the rigorous computation of the zero Before doing a direct comparison between the TRMP and
modes. We want now to understand whether the computatioff'® €xact solution, we need to discuss another subtle point.
of the zero modes can be pursued by using the concept dihe definition of a random multiplicative process shows an
time-dependent random multiplicative processes. In order t§xtra degree of freedom that is fixed neither by the scaling
define a suitable TRMP to define the case of the KraichnaR"oPerties nor by the dynamical scaling. To be more precise,
passive scalar we take the usual TRMP discussed in the pr#l the case of the Kraichnan model, it is possible to deéine
ceding section for the updating of scalar fluctuations at twd*S
adjacent scales:

A1(X,R)+B1 (X, R)I"'1+ By AX,R)Z5(x,R) "1 =0.

O 1 (1) =An 1 1(1) 6,(1), (18) 0n<t)=gnH Al(b),

whereA; are i.i.d. random variables with a time-independent . .
probability P(A). The only difference with the TRMP for whereg, are ""O.I‘ randpm variable for any scaleBecause
the velocity field is that now the updating time of the multi- the prob_ab|l|ty d|str!but|on 0f, does not depend om then

pliers must satisfy the dynamical law;6~v 0. Thus, we the scaling properties of,, does not depend og, . How-

need to update the multiplicative structds) at the random VeI, the fusion rules coefficients; do depend org,. In

time interval ... ;= 1/(k,u,), uncorrelated from the prob- Particular the quantity’.. depends ory, as

ability distribution of the multipliers themselevéscalars are

passivé. Moreover, because the advecting field is a Gaussian I.(g= 1)—>Fx(g)<g
field with correlation functions proportional g, ¢ one can (g%

2>2
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0.51 T T T T T T T 1 way to compute the scaling exponents. The model we used is
an improved version of the GOY(Gledzer-Ohkitani-
Yamada model[17,18], proposed in Ref.19] (see also Ref.

[4] for a recent review

0.5

0.49

8
8 048

d
2 o
(—+ vky U =i[kauh qUns o+ bk, Uy qUR_

0.47 dt

0.46 +(1+b)k,_ouy_oun_1]+f,, (19

T
1
4
| | |
0 02 04 06 08 1 12 14 16 18 2
p

0.45 1 1

S EE—— where u, is a complex variable representing the velocity

fluctuations at wave numbé&y, , wherek,= 2"k,. Numerical

simulations show that the variables, exhibit anomalous

FIG. 1. Results for the asymptotic val@, of the fusion rules  scaling for—1<b=0 , namely,

coefficients for the Kraichnan model. For different values pthe

result obtained by the analytic computation of the zero méces- Sp(m=(|ub)~k; ™, (20

tinuous ling is compared with the estimate-() obtained using the

TRMP. Inset: plot off’, vs nin the case of the TRMP. The value of where {(p) is a nonlinear function op. Numerically it is

I',, is multiplied by the factor. observed that the anomalous scaling behavior depends on the
parameterb and it does not depend on the specific form

Thus it seems that in our way to apply time-dependent mulchosen for the large-scale forcirig.

tiplicative process to the Kraichnan shell model we are not

able to fix the fusion rules coefficients. This is rather disap- Computing the scaling exponents

pointing because we start all our analysis by pointing out that

- . * .
the shape of the fusion is determined by the time dynamics in BY defining Q”(t)_.u”(t)un (1), we star_t by searching a
a TRMP. However, the functiog and its probability distri- solution of the equation obeyed by the simultaneous fourth-

bution should not depend on intermittency itself. In particu—.Order carrelation in the limit of zero viscosity , i.e., neglect-

lar, it is relatively easy to computgand its probability dis- ing dissipative effects:

tribution for the Kraichnan model by observing that fér

=2 all scaling exponentsi(p)=0 andp,=0, as already a(QmQ,Q:kn+1<QmWn+1>+bkn<QmWn>

observed in the work by Kraichnd@4]. Using this informa-

tion in Egs.(11), (12), (13) we find thatl’;=1/2. Similarly, —(1+b)ky— 1{QmW,_ 1)+ (n—>m)=0,
we can generalize this information for all fusion rules coef-

ficients. This constraint can be satisfied only by a suitable (21

choice ofg, . It turns out that in the Kraichnan shell model it where we have introduced the flux variable given by the
is equivalent to choosg, to be Gaussian. Thus the value of third-order object W, =Im(u%, ,u,u,_,). Equations (21)

I'.. should be multiplied by 2 in order to compare it with the can be written as an infinite set of linear equations for the

TRMP. The comparison is shown in Fig. 1. fifth-order correlation function(Q,W,,). First, we can pick

As one can see the results are in extremely good agree- h : : \ . )
. ) . mptoti havior given h | fusion rule:
ment with the exact solution. The above results provide ug)u“ e asymptotic behavior given by the usual fusion rule

with a complete and clear physical intuition of whazero (Qns Wi =Dk “@s(n), (W, Q) =Cik *®s(n).
modeis. We have shown that the interpretation of anomalous (22)
scaling in terms okzero modess fully compatible with the
statistical properties of multiplicative stochastic models. TheFusion rules are a general property of the correlation func-
only missing brick was the importance of temporal dynam-tions in turbulence, predicted by random multiplicative pro-
ics. Anomalous scaling as described by the zero modes of thgesses and verified with very good accuracy in laboratory
inertial operator for thesimultaneous th order structure experiment$16,10. In particular, it is known that for large
functions is the outcome of théme-dependergnergy trans- C; andD, are no longer dependent én
fer from large scales to small scales. Here we have shown How to obtain information on the behavior bf andC,?
that a suitable closure based on TRMP is indeed sufficient tBYy restricting ourselves to equal time correlation functions
calculate the zero mode for fourth-order structure functiorli.e., Egs.(1)] there is no hope to close the problem we are
(16?64 in the inertial range. facing and it is impossible to get any useful information by
using Egs(21). In order to make progress, we now assume
as in Sec. lll that the statistical propertieswgf can be de-
scribed in terms of a time-dependent random multiplicative
Here we want to understand if a result similar to the oneprocess. We will now employ the following approximations:
shown in the preceding section still holds true for the non<(i) we useC, andD, only for smalll, i.e.,|=<2; (ii) for small
linear shell models. This is important becaugene exploit | we can assume th&,=D,. Using these approximations
the possibility to use TRMP in the full nonlinear cageywe  we can rewrite from Eq(21) the equations regarding, and
can generalize the concept of zero modés); we find outa C, as follows:

IV. NONLINEAR SHELL MODEL
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(QnWp)[Cy+b—(1+b)C,;R ]=0, (23 2 T T T T T T
<QHWH>{[1_(1+b)XR71]CZ+b(1+X)C1 1.5F n
+[Rx—(1+b)]}=0, (24

where we have introduced the shorthand notation

=X "¢?) for the dependency on the second-order exponents
andR=\{®)*{2)={0) for the dependency on the fifth-order %3
anomaly ps=¢{(3)+¢£(2)—¢(5). Also here, as in the pas-

sive scalar, we have more unknowns than equations. Pre- ol L L L L L L
cisely, once given the second-order expongm), we have 2 4 6 8 n 10 12 14 16

two equations and three unknowns, the two fusion rules co-

efficients for close-by shellsC;,C,, and the fifth-order FIG. 2. Plot ofK(k,,b) vs n computed from simulations of the
anomaly, R(ps). Unfortunately one cannot follow the shell model for the following values of the parametetb=—0.4
same—winning—strategy adopted for the passive scalar, bé+), b=-0.6 (X), b=-0.7 (x). Only data in the inertial range
cause here the equivalent of méipl) is not stable for back are shown.

iteration. In order to close the problem, we must provide

information on the valu&,=C,/C, as a function ops and  where K(k,,b) takes into account the correlation, if any,
{(2). Here is where we want to exploit the TRMP. between the phasésin(A,)] and the amplitude of the shell

In order to apply our strategy, we first need to face theyariables. We expect that the quantit(k,,b), defined in
following problem. The structure of the E¢23) we wantto  Eq. (28), does not depend on the scéde least in the inertial
close deals explicitly with complex shell variables. Thereforerange) and might depend on the degree of intermittency, i.e.,
one should define two correlated random processes; one fgj, p. In particular, if R strongly depends on the correlation
the amplitudgu,| and another for the phase of the velocity petween phases and amplitudes of the shell variables Athen
shell variable. Such a Strategy, although feasible, introduc%ould be Strong'y dependent on the free paramm‘lter_
new unknowns which need to be fixed either by using thang in the definition of the nonlinear terms.
equgtions of motion or by. using additional information. To  The above discussion can be summarized by saying that
not increase the complexity of the problem we look for athe quantityC(k, ,b) is a direct measure of the importance
simpler and suitable approximation. The key point is that wepf the cross correlations between shell amplitudes and
need to use TRMP just to obtain the quan@ty=C,/C;,  phases. In order to work out a suitable strategy to apply

i.e., we need to control the ratio TRMP as a statistical closure for the nonlinear shell model,
W we only need thakC is independent ob. Let us remark that
R= M (25)  such a requirement is not equivalent to a “random phase
(W +1Qn) approximation” (which would imply £=1). In the follow-

ing we shall assume thdt is independent of intermittency

corrections, i.e., ob. Our assumption is justified by the nu-

merical results shown in Fig. 2. As one can see, the param-
, (26)  eterKis indeed constant, independent of both the shell index

Defining u,=|u,|expl¢), we can write

_ <|un+3||un+2||un+l||un|23inAn+2>

(JUn+2llUns 1l [ug®sinAp 1) and the intermittency intensity as measured by the variation
i of the parameteb in the equation of motion.
whereA,= ¢, + ¢y 1~ ¢ni1. Expression26) tells us that, Consequently, we may safely proceed with a simple

if the correlation between phases and amplitudes is neglitrMmpP based on amplitudes only, using &) with K
gible, we can rewrite E(26) as follows: =const still to be determined. Concerning the multipliers
(NUnssllUns ol [Uns 1] I2sinA ) distributions (18), as in the case of the Kraichnan shell
— M n+siiPnr 2l Pnt 1l nt2 model, we assume th&(A) is log normal. Let us recall that

(Junsal[UnsallugPsinA 1) the exponentg®(p) measured from the scaling of the sto-
. . T 1n S, . . .
(uns 113lUnl2SiNA 11 ) chastic signal|up|P~Kk; (p? do not coincide with thebare
~ . , (27) scaling exponents as estimated by the instantaneous multipli-
(lunl>sinA 1) cative process{(®(p)=—log,(AP), due to the correlation

between the local eddy-turn-over time and the velocity fluc-
tuations, the time dynamiaenormalizethe spatial scaling

[8]. This is an extra complication with respect to the passive
case. Hereafter we always refer to the bare exponents as
¥®)(p) and to those actually measured on the stochastic sig-
nal as¢®®(p). We proceed by performing the numerical es-

where we have fused the shell variables at scale8 and
n+ 2 with shell variable at scale+1 in the numerator and
shell variablesn+2 andn+1 with shell at scale in the
denominator. The above considerations can be formall
stated by writing

(Wi 2Q) (Uns1/3uql?) timate of the scaling properties of the stochastic sigfgby
A2l ek, b))~ s nz (28)  changing the parameters of thare log-normal distribution
(Whn+1Qn) (Junl®) P(A) of the multipliers. Any log-normal distribution is fixed

046304-6



INTERMITTENCY IN TURBULENCE: COMPUTING THE . .. PHYSICAL REVIEW E 68, 046304 (2003

EZE . T T T T T T zz T T T T T T T T T
} S _
092 | . - 0.7
\*\
09| e - 0.6
0.88 |- R i < 05
086F g5\ T T T T 4 - - 0.4
0.9 F - .
084 (%[ ] . - 0.3
os2 280 | | ] \\+ . 0.2 ;
0.8 0p 2 4 6 & 10, ] ] 0.1 ] 1 ] ] ] ] ] ] ]
01 015 02 025 03 035 04 045 "0 01 02 03 04 05 06 07 08 09 1
P b
FIG. 3. Results fofu,, 1[3[un2/ U 12 un[P@]u,y > as FIG. 4. The values of the fifth-order anomay= ¢(3)+ £(2)
a function of ps(o)=¢9(3)+¢(2)— ¢()(5). We plot the data —¢(5) as a function ofb obtained from the TRMP closure ap-
measured using the TRMPH) and the best linear fit 20.44ps. proach(continuous ling are compared with the numerical estimate

Inset: typical behavior of the fusion rule coefficier@g vs n ob- coming from simulations of the shell modet-{.

tained from a TRMP stochastic signal. . o .
using the TRMP. This is not yet the end of the story. It is not

by two—bare—parameters defining the mean and the vari€hough to plug the numerical resi&0) into Egs.(23) and
ance. We fix the mean of the distribution such as the third{24) to consistently close the equations. The problem is con-
order exponent measured on the TRMP which is consisterftected to the possible presence ofemormalizing scale-
with the 4/5 law,¢(9(3)=1. Now, we are left with only the independent stochastic variable in the multiplicative

varianceo of the multipliers probability distributioP(A) as ~ Process—theg, variable already discussed for the passive
a free parameter. In order to have a control on the ratio, Scalar case. We already discussed that the presence of such a

scale-invariant distribution changes only one overall constant

{ups1/3un® in the multiscale behavior. Moreover, we already know that
_ n+1 n
Cz/Cl—/C—<|u El , another unknown constant overdll shows up due to the
Ll(|un|5> phases’ statistics. Summing the two effects, we can assume
{lug®) that thetrue ratio C,/C,; which must be plugged into the

equation of motion can be estimated by the result of TRMP

we may estimat_e the unkn(_)wn multiscale.correlation.func7(30) plus a multiplicative, unknown, constari,independent
tions appearing in the by using the TRMP right-hand side bysf the intermittency of the model:

varying the log-normal distribution:

- 2
(lunsallunl?)  Junaf*lug > 29 c, 17 04s()]D. BB
A ; [Upq|3@ 5 )’ Using Egs.(23), (24), and (31), we can compute the fifth-
—3<|Un| ) ﬁ|un| 7 order anomalyps=1og,(R) by solving the system of three
(lunl®) |l equations in three unknowss,,C , ps:
where we have added a superscripg} (n the averages from C,;+b—(1+b)C;R (ps)=0, (32

the TRMP to recall the dependency on the variance of the
log-normal distribution. As a result we have a guess on thé1—(1+b)xR 1(ps)]Co+b(1+x)Cy+[R(ps)X—(1+Db)]
ratio C,/C; at varyingo up to the still unknown constait.

The results of the numerical simulations are shown in Fig. =0, (33
3 where we plot Eq(29) as a function of C,/Cy=D(1-0.44p5). (34)
ps(0)={9(3)+(2)~{9(5) To our knowledge, there are no simple theoretical arguments

which can be used in order to fix the valueZof We fix it by
assuming that fob=—0.4 we recover the value @fs com-
puted in the numerical simulations. It turns out tHat
=0.85. We can then compujg;, for all values ofb in the
range— 1<b<0. In Fig. 4 we show the computation p§

in the TRMP.
As one can easily see in Fig. 3, expressi@g) is ex-
tremely well fitted by a linear behavior:

|un+1|3| un|2(0)

—1-0.44p5(0). (30) obtgined by using 'Eq$32)—(.34) together with the numerical
RES estimate ofp5 obtained by smulatlons of the shell modeI: As
TR one can see the results are in very good agreement with the
[ug| 3@ numerical datdor the whole range of b

In order to validate our results, we have compared the
This is the third equation, linking the unknowns in E®3)  estimate of the anomalous anomaly for the values ofb
and (24) and closing the problem. It has been obtained byand\ corresponding to the curve:
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1 T T T T T T T lows that in order to compute the scaling exponents we need
to computeV(h,,). The role ofR; ; is crucial because it de-
081 ] termines the full shape of the coefficients needed to compute

the fusion rules. Using the time average equation of motions
for the structure functions, we are therefore able to obtain a
functional equation forV, whose solutions provide the
anomalous scaling exponents of the shell model. In order to
understand whether our strategy is providing reasonable re-
sults, we have assumed th&tx) is a quadratic function of.
5 07 065 06 055 05 045 04 035 Thus, becausé(3)=1, we have only one unknown to be

b computed corresponding to the quadratic nonlinearity. With
this assumption, the functional equation féreduces to an
equation for one unknowtthe quadratic nonlinearifywhich

041 =

FIG. 5. The values for the fifth-order anomalys=¢{(3)

+¢(2)—¢(5) as a function ob obtained from the TRMP closure . .
approach along the curve=1/(1+b) (continuous ling are com- we have solved. The results we obtain are in very good

pared with the numerical estimate coming from simulations of the"jlgreement with the numerical simulation of the shell mpdel.
shell model @). We want to stress that the same procedure can be applied for
the passive scalar advected by a random velocity figld
1 Kraichnan modelwith extremely good results and without
=— (35 any ad hocapproximation.
1+b y P
We want to highlight few points which we believe are

Curve(35) is determined by the requirement that the secondfUely independent of the approximations we did in this pa-
in-viscid invariant, beside the total energyu?, keeps the Per- (i) The computations of the scaling exponents are fea-
physical dimensions of helicity ,(—)"k,|u|? [20,21]. It is sible if the fusion rules coefficient are known as a function of
known[22] that along this curve intermittency stay constant.intermittencyli.e., the functionD (h) in the multifractal lan-
Numerical estimate of Eq30) for different values of does guagé. (i) The fusion rules coefficient depends on intermit-
not show any appreciable difference with respect to what i¢ency because of time dynamid@i) Time-dependent ran-
plotted in Fig. 3. Thus, we can still use E84) as a numeri- dom multiplicative processes are consistent with the
cal estimate o€, /C, with the same value @P. In Fig. 5we  dynamical deterministic structure of the equation of motion
show the comparison between the results of the closure oand provide a useful tool to compute fusion rules coeffi-
the special curvé35) and the values estimated by numerical cients.

simulations. Again, the stochastic closure works perfectly, Nevertheless, it is not clear yet, if the stochastic process
allowing for a precise determination of the anomaly alongsuccessfully applied here to close the equation of motion of

A

this curve. fourth-order velocity correlation is also the optimal solution
for higher-order correlation functions. In other words, one
V. CONCLUSIONS AND DISCUSSIONS has to face also the possibility that different fluctuations

controlling higher-order correlation functionare described
y different stochastic processes.
In applying our strategy to the shell model we have per-

In this paper we have discussed a possible strategy t
compute the scaling exponent of a nonlinear shell model.

The main idea of this strategy is to assume that the statistic%rmed a number of approximations. In particular we con-

properties of the shell variables, can be described in terms sider an important point to generalize our approach in order

of a t_|me-dependent ran;iom r_nu_lt|pI|c_at|ve process. A math'to properly take into account the phase dynamics in the shell
ematical way to summarize this idea is the following. Let us

) : model. Also, the approximatio@, =D, should be considered
define the random variablk, as as a first order of approximation in order to develop a sys-
(36) tematic theory. We also want to highlight two important top-

ics for future research. First of all, we think that it is impor-

Let us also assume thaf,=\", where the random tantto apply our method in the case of the Kraichnan model
variables h, fluctuate with probability distributionP,  intwo or more space dimensions. In order to perform such a
=Z.[exp—V(h,)]. If we neglect time dynamics the probabil- task we neec_i to d_evelop the field theory of time-dependent
ity distribution of the shell variables is given by the product fandom multiplicative processes. Also, we need to have a
I1,P,. Time-dependent random multiplicative process pro-more Qetq|led analytical control_of tlme—erendent randc_)m
vides well-defined correlations among the random variable§ultiplicative processes, following the ideas already dis-
for different scales. One can therefore write cussed in Refd8,9].

[Un+ 1| =Aq|un|.

P(Ul,UZ, B '):Z’exq_znv(hn)+2i,jRijhihj]-
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