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Intermittency in turbulence: Computing the scaling exponents in shell models
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We discuss a stochastic closure for the equation of motion satisfied by multiscale correlation functions in the
framework of shell models of turbulence. We present a plausible closure scheme to calculate the anomalous
scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We
present an explicit calculation for fifth-order scaling exponent by varying the free parameter entering in the
nonlinear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar
provides a connection between the concept of zero-modes and time-dependent cascade processes.
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I. INTRODUCTION

Since the fundamental work by Kolmogorov, it has be
recognized that a consistent theory for the statistical pro
ties of turbulence should quantitatively explain intermitten
In the last ten years many important steps have been take
provide a consistent picture of intermittency in turbulen
First, experimental measurements and a new systematic
to analyze data have shown the universal feature of inter
tency@1,2#. Second, a well-defined theory has been propo
to compute anomalous scaling for a class oflinear problems,
i.e., the case of Kraichnan passive scalar@3#. In the latter
case, the notion ofzero modesprovided a theoretical frame
work for many fundamental properties of intermittency. Y
we are still looking for defining a suitable strategy for
quantitative computation of intermittency in the full nonlin
ear problem, namely, the Navier-Stokes equations. The p
lem of anomalous scaling must be divided into two ste
First, we need to clean it from all unwanted difficulties, tr
ing to focus on the main physical mechanism leading
small-scale intermittency and to its connections with
nonlinear structure of the equation of motion. This is t
main goal of this paper. We show that the anomalous sca
of small-scale velocity fluctuations of a shell model of tu
bulence can be derived from the equation of motion. T
result is based on a stochastic closure. A second, more
bitious goal, is to extend this result to the full complexity
Navier-Stokes equations. Some comments on the latter p
lem are also proposed in the conclusions.

Let us make a few general comments on the nature of
problem we are facing. We are interested in the~universal!
features of the statistical properties of the velocity fie
v(x,t) in a homogeneous and isotropic turbulent flow. E
perimental data and theoretical ideas suggest that t
universal properties are related to velocity fluctuatio
at scales much smaller than the energy input scaleL.
More precisely, we want to compute the simultaneo
multipoint correlation functions C(n)(x1 ,x2 , . . . ,xn)
5^v i 1

(x1 ,t)v i 2
(x2 ,t), . . . , . . . ,v i n

(xn ,t)& for scale separa

tions uxi2xj u much smaller thanL. Our task must be per
formed by using the Navier-Stokes equations. Equations
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motion provide a relation among the~infinite! sets of simul-
taneous correlation functionsC(n)(x1 ,x2 , . . . ,xn):

05
d

dt
C(n)~x1 ,x2 , . . . ,xn!5G@C(n11)~x1 ,x2 , . . . ,xn!#,

~1!

where we have assumed stationarity and withG we denote
the integrodifferential linear operator derivable explicit
from the Navier-Stokes equations.

For Kraichnan model the equivalent of the above hi
archy is closed, order by order in the correlation fun
tions, allowing for a perturbative calculation of som
statistical properties. In the full Navier-Stokes proble
one can show that Eqs.~1! do not form a closed set o
equations, rather it should be considered as a constr
for the complete solution. Actually, the fundament
quantities for studying intermittency in turbulenc
involve also temporal information from multitime
correlation functions C(n)(x1 ,t1 ;x2 ,t2 ; . . . ;xn ,tn)
5^v i 1

(x1 ,t1)v i 2
(x2 ,t2)•••v i n

(xn ,tn)&. Namely, we need to
look for the solution of the problem

]k

]t1•••]tk
C(n)~x1 ,t1 ;x2 ,t2 ; . . . ;xn ,tn!5S@C(n11)#,

~2!

with k<n andS is a functional of the time-dependent co
relation functions of ordern11 depending onn11 velocity
fields atn different times. The fundamental question we a
facing is which are, if any, the physical informations w
should use in order tosolveEq. ~2!. In some broad sense, no
being able to solve Eq.~2! by any kind of ‘‘brute force’’
attempt, we still need to understand which are the corr
‘‘order parameters’’ we should consider to find out a syste
atic way to compute a solution of Eq.~2!.

We argue that a strategy to compute the solutions of
multitime hierarchy~2! may be outlined by first finding a
‘‘physically consistent’’ solution for the simultaneous hiera
chy ~1! which can be used as the starting point for success
approximations. By physically consistent we mean that
solution should respect the phenomenological constra
©2003 The American Physical Society04-1
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imposed by the Navier-Stokes equations and in particula
its time-space scaling properties. This is the main idea p
sued in this paper. More precisely, we will discuss how
we can provide a quantitative computation of intermitten
based on the following three main points:~i! we only use the
constraints coming from the simultaneous Eqs.~1!; ~ii ! we
look for the solutions of Eq.~1! by assuming that the out-of
equilibrium statistical properties of the velocity field can
obtained by a suitable time-dependent stochastic proc
~iii ! we shall restrict ourselves to nonlinear shell mod
@1,4#.

Having discussed in details the motivation of point~i!, let
us briefly comment on point~ii !. Random multiplicative pro-
cesses have been often used in literature as a simple m
ematical tool to describe anomalous scaling properties of
bulent flows @5#. Only a few attempts have successfu
linked cascade-multiplicative process with the structure
the equation of motion@6#. Recently, the concept of random
multiplicative process has been enlarged by including n
trivial time dynamics@7,8#. In particular, the choice of time
dynamics can be done in order to satisfy the Navier-Sto
temporal scaling~in a Lagrangian reference frame!. More-
over, it has been shown that time dynamics affects, in a
trivial way, also the spatial scaling ofC(n)(x1 ,x2 , . . . ,xn).
Our strategy is to employ the statistical constraint of tim
dependent random multiplicative process to look for a so
tion of Eqs.~1!. The theory of time-dependent random mu
tiplicative process is in its infancy. Only few exact resu
have been obtained so far. One can wonder why we ne
time-dependent stochastic process as a tool to describe e
time correlation functions. The answer is that the shape
the correlation functions is strongly dependent on the ti
dynamics@9#. The hope is that, by using the dynamical sc
ing required by the Navier-Stokes equations, we can alre
obtain a good approximation to the real solutions. Finally,
want to comment on point~iii !. Shell models provide the
simplest model to check our strategy and to compare
physical ideas with clean numerical simulations in t
asymptotic regime of large Reynolds numbers.

Even with the approximations defined in points~i!–~iii !,
the problem of computing the universal anomalous scalin
turbulence is equivalent to solving a functional equation, i
each Eq.~1! defines, for any order, a constraint for the pro
ability distribution. We will limit ourselves to the lowes
nontrivial, order such as to be able to push the calcula
analytically as much as possible.

The paper is organized in the following way. In Sec. II w
briefly recall the basic properties of time-dependent rand
multiplicative process. In Sec. III we address the problem
anomalous scaling in Kraichnan shell models of passive
lars. There, we present a rederivation in the framework
stochastic closure of an exact result for the anomalous s
ing of fourth-order structure function. Thus, we are able
connect the mathematical notion ofzero modeswith thecas-
cade mechanismdescribed by the time-dependent multip
cative process. In Sec. IV we extend the stochastic clos
used for the passive scalar case to the fully nonlinear mo
We discuss at length both similarities and differences
tween the two cases and we present, to our knowledge
04630
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first attempt to calculate the fifth-order scaling exponents
varying the values of the free parameter in the shell mod
Conclusions will follow in Sec. V.

II. TIME-DEPENDENT RANDOM
MULTIPLICATIVE PROCESS

Let us first review the main ingredients of time-depend
multiplicative process~TRMP! @8#. We introduce a set of
reference scales,,n5,022n, and a set of velocity incre-
ments at scales,,n : dnv;v(x1,n)2v(x). The basic idea
of randomtime-independentmultiplicative process is to as
sume that statistical properties ofdnv can be obtained by

dn11v5An11dnv, ~3!

whereAi are i.i.d. ~independent identically distributed! ran-
dom variables with a time-independent—bare— probabi
P(A). Time-independent multiplicative process as Eq.~3!
has been widely used in the past to mimics the spatial dis
bution of velocity fluctuations in turbulence and the mul
fractal energy dissipation measure@1#. Recently, also an at
tempt to match the stochastic multiplicative model with t
deterministic structure of the equation of motion of a sh
model of turbulence has been presented@6#. Despite the suc-
cess in reproducing the cascade phenomenology, ti
independent multiplicative process cannot capture the su
complexity of the spatial and temporal behavior of Navie
Stokes equations~in a Lagrangian reference frame!. For ex-
ample, multiscale correlation functions of the kin
^dnvdn8v& are well reproduced only asymptotically fo
large-scale separations,n8@n @10#. The problem is that
simple time-independent random multiplicative processes
not take into account the time dynamics, i.e., they are
constrained by the equation of motion. To overcome this d
ficulty, a new class of time-dependent stochastic multipli
tive process~TRMP! have been proposed@7,8#. Basically,
the idea is to mimic the temporal constraints imposed by
structure of the Navier-Stokes equations,] tv;v]v, by re-
quiring that the multiplicative structure~3! is satisfied for the
random time intervaltn115,n /(dnv). To build the tempo-
ral dynamics we proceed as follows. We extract the inst
taneous multiplierAn , connecting the amplitudes of two ve
locity fluctuations at adjacent scales,dnv5Andn21v, with a
given probabilityP(A), independent from the scale,,n , and
we keep it constant for a time interval@ t,t1tn#, with tn
5,n /(dnv) being the local instantaneous eddy-turn-ov
time. Thus, for each scale,n , we introduce a time-dependen
random processAn(t) which is piecewise constant for a ran
dom time interval@ tn

(k) ,tn
(k)1tn#, if tn

(k) is the time of thekth
jump at scalen. The corresponding velocity field at scalen,
in the time intervaltn

(k),t,tn
(k)1tn , is given by the simple

multiplicative rule:

dnv~ t !5An~ t !dn21v~ tn
(k)!. ~4!

What is important to notice is that at each jumping tim
tn
(1) ,tn

(2) , . . . ,tn
(k) , . . . only the velocity field at the corre

sponding shelln is updated, i.e., information across differe
4-2
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scales propagates with a finite speed. In this way we re
duce the phenomenology of the nonlinear evolution
Navier-Stokes dynamics:] tv}v]v. Multipliers at different
scales develop correlations through the time depende
From now on, we will denote with••• averages with respec
to the stochastic process and with^•••& averages over the
chaotic deterministic dynamics of the shell model.

A more detailed numerical and theoretical analysis of
statistical properties of TRMP can be found in Ref.@8#. The
possibility to reproduce thesingle-timestatistical properties
of TRMP by a Gibbs-like measure has also been rece
discussed in Ref.@9#.

III. TRMP AND THE KRAICHNAN MODEL

We start our work defining the relationship between
Kraichnan shell model for passive scalar and time-depen
random multiplicative process. We first review the model a
see how the computation of the anomalous exponents ca
rigorously done in this case. The model is defined as follo
@11,12#. Passive increments are described on a discrete
set of wave numbers~shells! kn5k0ln, by a complex vari-
ableun(t), which satisfy the equations (n51,2, . . . ,N)

F d

dt
1kkn

2Gun~ t !5 i @cnun11* ~ t !un* ~ t !1bnun21* ~ t !un21* ~ t !#

1d1nf ~ t !, ~5!

where the star denotes complex conjugation andbn5
2kn ,cn5kn11 are chosen such as to impose energy con
vation in the zero diffusivity limit. The intershell ratio mus
be taken such asl.1. Boundary conditions are defined a
u05u050. The forcing termd1nf (t) is Gaussian and delt
correlated:̂ f (t) f (t8)&5F1d(t2t8). It acts only on the first
shell. Kraichnan models of passive advection assume
each velocity variableun(t) is a complex Gaussian an
white-in-time stochastic process, with a variance wh
scales aŝ um(t)un* (t8)&5d(t2t8)dnmdm , dm5km

2j . The
cross correlation between the advecting velocity variab
and the passive variable can be rewritten in terms of pas
correlations only, when the velocity field is a white-in-tim
Gaussian variable. Thus, all equations for all passive st
ture functions are closed@14,11,12#. The goal is to calculate
the scaling exponentsH(p) of thepth order passive structur
functions as defined by

^uunup&;kn
2H(p) .

We concentrate on the nonperturbative analytic calcula
of the fourth-order structure functionPnn5^(unun* )2&
}km

2z4 ~the lowest order with nontrivial anomalous scaling!.
The closed equation satisfied byPnq5^(unun* )(uquq* )& is

Ṗnq5~d1,nEn1d1,qEq!F12k~kn
21kq

2!Pnq1$2Pnqcn
2dn@~1

1dq,n11!1lj22~11dq,n21!#1Pn11,qcn
2dn~11dq,n!

1Pn21,qbn
2dn21~11dq,n!1~q↔n!%, ~6!
04630
o-
f

y.

e

ly

e
nt
d
be
s
b-

r-

at

h

s
ve

c-

n

whereEn5^unun* &5E0kn
j22 , i.e., the second-order scalin

exponent is given byH(2)522j. The above equation ca
be elegantly rewritten in the operatorial form:

Ṗnq5Inq,n8q8Pn8q81kDnq,n8q8Pn8q81Fnq , ~7!

where we have explicitly separated the inertialI from the
dissipativeD part of the linear operator and where the no
homogeneous term composed by the forcing and by
second-order passive structure functions is summarize
the expressionFnq .

It is useful to highlight in the two-scale correlation fun
tion Pn,n1 l the dependency from the scale separations
introducing the set of variablesCl :

Pn,n1 l5Cl Pn,n . ~8!

From basic scaling principle one may argue that
asymptotic scaling behavior is given by the so-called fus
rules @15,16,7,10#:

Pn,n1 l;
^uun1 l u2&

^uunu2&
^uunu4&, l→`, ~9!

which means thatCl;C`kl
j22 for l positive and large

enough. Similarly, forl negative, we may write

Pn,n2 l5Dl Pn,n , ~10!

where now the asymptotic behavior ofDl feels the fourth-
order scaling behaviorDl;D`kl

2(j22)2r4 for l large
enough, withr45H(4)22H(2) being the anomaly of the
fourth-order scaling exponent. The two sets of variablesDl
and Cl are not independent. By introducing the notatio
x5lj22 and R5lr4 , one may rewrite both of them as
function of a new set of variablesG l defined asCl5G lx

l and
Dl5G l /(xR) l @12#. The assumption that fusion rules are s
isfied is the only crucial point in computing the zero mode
The existence of fusion rules implies that correlation fun
tions show scaling in the inertial range.

The infinite set of equations for the inertial-rangezero-
modeof Eq. ~6!, Imq,m8q8Pm8q850, can be rewritten in the
following form:

A0~x,R!1B0,1~x,R!G150, q5n, ~11!

A1~x,R!1B1,1~x,R!G11B1,2~x,R!G250, n5q11,
~12!

Bn,n21~x,R!Gn211Bn,n~x,R!Gn1Bn,n11~x,R!Gn1150,

n.q11, ~13!

where the functionsA0 ,A1 ,Bi , j are known functions ofx and
R5lr4. The computation of the zero modes means to fi
out the numbersR andG i which solves Eqs.~11!, ~12!, and
~13!. Let us remark that for any given total number of she
N, we haveN11 equations andN12 unknowns which are
given by theG i for i 51, . . . ,N11 plus the parameter di
rectly affected by the fourth-order anomalous expon
4-3
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R(r4). Thus, it is impossible to find a solution unless som
extra information is added to our problem. This informati
can be found by observing that for largen the functionsB
appearing in Eq.~13! become constants independent of bo
x andR. In the limit of largen, defining

Zn5
Gn11

Gn
,

one finds that Eq.~13! can be rewritten as

Zn115F~Zn!, ~14!

where the explicit form ofF is given in Ref.@12#. Map ~14!
possesses a fixed pointZ* 51 for large shell indexn which
corresponds to the fact thatGn reaches a plateau for largen,
i.e., to the fact that fusion rules are asymptotically satisfi
The crucial point is to observe thatZ* is a stable fixed point
for the inverse ofF, i.e., for

Zl5F21~Zl 11!. ~15!

The stability of Z* for Eq. ~15! allows us to compute the
values ofZn for small n, i.e., we start withZ`51 and then
we computeZm by using Eq.~13! up to m52. In this way
we can computeZ2 as a function ofR andx. Thus Eqs.~11!
and ~12! become

A0~x,R!1B0,1~x,R!G150, ~16!

A1~x,R!1B1,1~x,R!G11B1,2~x,R!Z2~x,R!G150.
~17!

Equations~16! and~17! have two unknowns, namely,G1 and
R, for two equations and, therefore, one can find a solut
The analytical solution turns out to be in perfect agreem
with the numerics both for the fourth-order object describ
here @12# and for higher-order correlations@13#. This ends
the review of the analytical results previously obtained
the model.

The solution of the Kraichnan shell model for passi
scalar provides us the rigorous computation of the z
modes. We want now to understand whether the computa
of the zero modes can be pursued by using the concep
time-dependent random multiplicative processes. In orde
define a suitable TRMP to define the case of the Kraich
passive scalar we take the usual TRMP discussed in the
ceding section for the updating of scalar fluctuations at t
adjacent scales:

un11~ t !5An11~ t !un~ t !, ~18!

whereAi are i.i.d. random variables with a time-independe
probability P(A). The only difference with the TRMP fo
the velocity field is that now the updating time of the mul
pliers must satisfy the dynamical law:] tu;v]u. Thus, we
need to update the multiplicative structure~18! at the random
time interval tn1151/(knun), uncorrelated from the prob
ability distribution of the multipliers themseleves~scalars are
passive!. Moreover, because the advecting field is a Gauss
field with correlation functions proportional tokn

2j one can
04630
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deduce thattn is not a random time and should be chosen
tn5kn

j22 . One can show that such a class of TRMP predi
a nontrivial behavior of the fusion rules coefficientsCl ,Dl .
Moreover, the detailed behavior of the fusion rules coe
cients are determined by the spatial intermittency, i.e.,
constraint] tu;v]u between temporal and spatial scalin
induced by the Navier-Stokes structure in a Lagrangian
erence frame is satisfied. This is the crucial point we nee
use to solve our problem. We can summarize our discus
in the following way. TRMP provides us with a relationsh
between each fusion rule coefficientCl , Dl and the anoma-
lous exponents. In this way we are building a stochastic c
sure for Eqs.~11!, ~12!, and ~13!. Moreover, the time and
spatial dependencies of the stochastic process are cons
with the structure of the deterministic equation of motio
We want to show here that besides the exact method
cussed before the stochastic closure through the TRMP
works.

In the following we assume that the—bare—probabil
P(A) is log normal. We are aware that log-normal probab
ity distributions are not consistent with the anomalous sc
ing of turbulent flows or shell models for large orders, ev
for the case of the Kraichnan shell model. However as fa
we are interested, to computeH(p) for rather smallp, log
normality is a reasonable approximation which simplifies
analytical computations. Because we know thatH(2)52
2j, the probability distributionP(A) depends only on a
single unknown parameters which describes the variance o
the log-normal fluctuations. By using the exact solution p
viously discussed, for each value ofj we can compute the
value of H(4). Thus for each value ofj we can fix the
parameters of the log-normal distribution in order to rep
duce the anomalous exponent. We can next simulate
TRMP numerically and compute the value of the fusion ru
coefficientsG l . The most sensitive test is made by comp
ing the prediction on the asymptotic values ofG l for large l
which we denote byG` ~notice thatG051 by definition! as
extracted from the computation of the zero mode and fr
the TRMP.

Before doing a direct comparison between the TRMP a
the exact solution, we need to discuss another subtle p
The definition of a random multiplicative process shows
extra degree of freedom that is fixed neither by the sca
properties nor by the dynamical scaling. To be more prec
in the case of the Kraichnan model, it is possible to definu
as

un~ t !5gn)
i

n

Ai~ t !,

wheregn are i.i.d. random variable for any scalen. Because
the probability distribution ofgn does not depend onn, then
the scaling properties ofun does not depend ongn . How-
ever, the fusion rules coefficientsG l do depend ongn . In
particular the quantityG` depends ongn as

G`~g51!→G`~g!
^g2&2

^g4&
.

4-4
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Thus it seems that in our way to apply time-dependent m
tiplicative process to the Kraichnan shell model we are
able to fix the fusion rules coefficients. This is rather disa
pointing because we start all our analysis by pointing out t
the shape of the fusion is determined by the time dynamic
a TRMP. However, the functiong and its probability distri-
bution should not depend on intermittency itself. In partic
lar, it is relatively easy to computeg and its probability dis-
tribution for the Kraichnan model by observing that forj
52 all scaling exponentsH(p)50 and rp50, as already
observed in the work by Kraichnan@14#. Using this informa-
tion in Eqs.~11!, ~12!, ~13! we find thatG151/2. Similarly,
we can generalize this information for all fusion rules co
ficients. This constraint can be satisfied only by a suita
choice ofgn . It turns out that in the Kraichnan shell model
is equivalent to choosegn to be Gaussian. Thus the value
G` should be multiplied by 2 in order to compare it with th
TRMP. The comparison is shown in Fig. 1.

As one can see the results are in extremely good ag
ment with the exact solution. The above results provide
with a complete and clear physical intuition of what azero
modeis. We have shown that the interpretation of anomalo
scaling in terms ofzero modesis fully compatible with the
statistical properties of multiplicative stochastic models. T
only missing brick was the importance of temporal dyna
ics. Anomalous scaling as described by the zero modes o
inertial operator for thesimultaneous pth order structure
functions is the outcome of thetime-dependentenergy trans-
fer from large scales to small scales. Here we have sh
that a suitable closure based on TRMP is indeed sufficien
calculate the zero mode for fourth-order structure funct
^uumu2uuqu2& in the inertial range.

IV. NONLINEAR SHELL MODEL

Here we want to understand if a result similar to the o
shown in the preceding section still holds true for the no
linear shell models. This is important because~i! we exploit
the possibility to use TRMP in the full nonlinear case;~ii ! we
can generalize the concept of zero modes;~iii ! we find out a

FIG. 1. Results for the asymptotic valueC` of the fusion rules
coefficients for the Kraichnan model. For different values ofj, the
result obtained by the analytic computation of the zero modes~con-
tinuous line! is compared with the estimate (1) obtained using the
TRMP. Inset: plot ofGn vs n in the case of the TRMP. The value o
Gn is multiplied by the factor12 .
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way to compute the scaling exponents. The model we use
an improved version of the GOY~Gledzer-Ohkitani-
Yamada! model@17,18#, proposed in Ref.@19# ~see also Ref.
@4# for a recent review!:

S d

dt
1nkn

2Dun5 i @knun11* un121bkn21un11un21*

1~11b!kn22un22un21#1 f n , ~19!

where un is a complex variable representing the veloc
fluctuations at wave numberkn , wherekn52nk0. Numerical
simulations show that the variablesun exhibit anomalous
scaling for21<b<0 , namely,

Sp~n![^uun
pu&;kn

2z(p) , ~20!

where z(p) is a nonlinear function ofp. Numerically it is
observed that the anomalous scaling behavior depends o
parameterb and it does not depend on the specific for
chosen for the large-scale forcingf n .

Computing the scaling exponents

By defining Qn(t)5un(t)un* (t), we start by searching a
solution of the equation obeyed by the simultaneous fou
order correlation in the limit of zero viscosity , i.e., neglec
ing dissipative effects:

d

dt
^QmQn&5kn11^QmWn11&1bkn^QmWn&

2~11b!kn21^QmWn21&1~n↔m!50,

~21!

where we have introduced the flux variable given by t
third-order object Wn5Im(un11* unun21). Equations ~21!
can be written as an infinite set of linear equations for
fifth-order correlation function:̂QnWm&. First, we can pick
out the asymptotic behavior given by the usual fusion ru

^Qn1 lWn&5Dlkl
2z(2)S5~n!, ^Wn1 lQn&5Clkl

2z(3)S5~n!.
~22!

Fusion rules are a general property of the correlation fu
tions in turbulence, predicted by random multiplicative pr
cesses and verified with very good accuracy in laborat
experiments@16,10#. In particular, it is known that for largel,
Cl andDl are no longer dependent onl.

How to obtain information on the behavior ofDl andCl?
By restricting ourselves to equal time correlation functio
@i.e., Eqs.~1!# there is no hope to close the problem we a
facing and it is impossible to get any useful information
using Eqs.~21!. In order to make progress, we now assum
as in Sec. III that the statistical properties ofun can be de-
scribed in terms of a time-dependent random multiplicat
process. We will now employ the following approximation
~i! we useCl andDl only for smalll, i.e., l<2; ~ii ! for small
l we can assume thatCl5Dl . Using these approximation
we can rewrite from Eq.~21! the equations regardingC1 and
C2 as follows:
4-5
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^QnWn&@C11b2~11b!C1R21#50, ~23!

^QnWn&$@12~11b!xR21#C21b~11x!C1

1@Rx2~11b!#%50, ~24!

where we have introduced the shorthand notationx
5l2z(2) for the dependency on the second-order expone
andR5lz(3)1z(2)2z(5) for the dependency on the fifth-orde
anomalyr55z(3)1z(2)2z(5). Also here, as in the pas
sive scalar, we have more unknowns than equations.
cisely, once given the second-order exponentz(2), wehave
two equations and three unknowns, the two fusion rules
efficients for close-by shells,C1 ,C2, and the fifth-order
anomaly, R(r5). Unfortunately one cannot follow the
same—winning—strategy adopted for the passive scalar,
cause here the equivalent of map~14! is not stable for back
iteration. In order to close the problem, we must prov
information on the valueZ25C2 /C1 as a function ofr5 and
z(2). Here is where we want to exploit the TRMP.

In order to apply our strategy, we first need to face
following problem. The structure of the Eqs.~23! we want to
close deals explicitly with complex shell variables. Therefo
one should define two correlated random processes; on
the amplitudeuunu and another for the phase of the veloc
shell variable. Such a strategy, although feasible, introdu
new unknowns which need to be fixed either by using
equations of motion or by using additional information.
not increase the complexity of the problem we look for
simpler and suitable approximation. The key point is that
need to use TRMP just to obtain the quantityZ25C2 /C1,
i.e., we need to control the ratio

R5
^Wn12Qn&

^Wn11Qn&
. ~25!

Defining un5uunuexp(if), we can write

R5
^uun13uuun12uuun11uuunu2sinDn12&

^uun12uuun11uuunu3sinDn11&
, ~26!

whereDn5fn1fn212fn11. Expression~26! tells us that,
if the correlation between phases and amplitudes is ne
gible, we can rewrite Eq.~26! as follows:

R5
^uun13uuun12uuun11uuunu2sinDn12&

^uun12uuun11uuunu3sinDn11&

;
^uun11u3uunu2sinDn12&

^uunu5sinDn11&
, ~27!

where we have fused the shell variables at scalesn13 and
n12 with shell variable at scalen11 in the numerator and
shell variablesn12 and n11 with shell at scalen in the
denominator. The above considerations can be form
stated by writing

^Wn12Qn&

^Wn11Qn&
5K~kn ,b!

^uun11u3uunu2&

^uunu5&
, ~28!
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where K(kn ,b) takes into account the correlation, if an
between the phases@sin(Dn)# and the amplitude of the she
variables. We expect that the quantityK(kn ,b), defined in
Eq. ~28!, does not depend on the scale~at least in the inertial
range! and might depend on the degree of intermittency, i
on b. In particular, ifR strongly depends on the correlatio
between phases and amplitudes of the shell variables, theK
should be strongly dependent on the free parameterb enter-
ing in the definition of the nonlinear terms.

The above discussion can be summarized by saying
the quantityK(kn ,b) is a direct measure of the importanc
of the cross correlations between shell amplitudes
phases. In order to work out a suitable strategy to ap
TRMP as a statistical closure for the nonlinear shell mod
we only need thatK is independent ofb. Let us remark that
such a requirement is not equivalent to a ‘‘random ph
approximation’’~which would implyK51). In the follow-
ing we shall assume thatK is independent of intermittency
corrections, i.e., ofb. Our assumption is justified by the nu
merical results shown in Fig. 2. As one can see, the par
eterK is indeed constant, independent of both the shell ind
and the intermittency intensity as measured by the varia
of the parameterb in the equation of motion.

Consequently, we may safely proceed with a sim
TRMP based on amplitudes only, using Eq.~28! with K
5const still to be determined. Concerning the multiplie
distributions ~18!, as in the case of the Kraichnan she
model, we assume thatP(A) is log normal. Let us recall tha
the exponentsz (s)(p) measured from the scaling of the st

chastic signaluunup;kn
zs(p) do not coincide with thebare

scaling exponents as estimated by the instantaneous mul
cative process,z (b)(p)52 logl^A

p&, due to the correlation
between the local eddy-turn-over time and the velocity flu
tuations, the time dynamicsrenormalizethe spatial scaling
@8#. This is an extra complication with respect to the pass
case. Hereafter we always refer to the bare exponent
z (b)(p) and to those actually measured on the stochastic
nal asz (s)(p). We proceed by performing the numerical e
timate of the scaling properties of the stochastic signal~4! by
changing the parameters of thebare log-normal distribution
P(A) of the multipliers. Any log-normal distribution is fixed

FIG. 2. Plot ofK(kn ,b) vs n computed from simulations of the
shell model for the following values of the parameterb: b520.4
(1), b520.6 (3), b520.7 (!). Only data in the inertial range
are shown.
4-6
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by two—bare—parameters defining the mean and the v
ance. We fix the mean of the distribution such as the th
order exponent measured on the TRMP which is consis
with the 4/5 law,z (s)(3)51. Now, we are left with only the
variances of the multipliers probability distributionP(A) as
a free parameter. In order to have a control on the ratio,

C2 /C15K ^uun11u3uunu2&

^uun11u3&

^uunu3&
^uunu5&

,

we may estimate the unknown multiscale correlation fu
tions appearing in the by using the TRMP right-hand side
varying the log-normal distribution:

^uun11u3uunu2&

^uun11u3&

^uunu3&
^uunu5&

;
uun11u3uunu2(s)

uun11u3(s)

uunu3(s)
uunu5(s)

, ~29!

where we have added a superscript (s) in the averages from
the TRMP to recall the dependency on the variance of
log-normal distribution. As a result we have a guess on
ratio C2 /C1 at varyings up to the still unknown constantK.

The results of the numerical simulations are shown in F
3 where we plot Eq.~29! as a function of

r5~s!5z (s)~3!1z (s)~2!2z (s)~5!

in the TRMP.
As one can easily see in Fig. 3, expression~29! is ex-

tremely well fitted by a linear behavior:

uun11u3uunu2(s)

uun11u3(s)

uunu3(s)
uunu5(s)

5120.44r5~s!. ~30!

This is the third equation, linking the unknowns in Eqs.~23!
and ~24! and closing the problem. It has been obtained

FIG. 3. Results foruun11u3uunu2(s)/uun11u3(s)/uunu3(s)uunu5(s) as
a function ofr5(s)5z (s)(3)1z (s)(2)2z (s)(5). We plot the data
measured using the TRMP (1) and the best linear fit 120.44r5.
Inset: typical behavior of the fusion rule coefficientsCn vs n ob-
tained from a TRMP stochastic signal.
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using the TRMP. This is not yet the end of the story. It is n
enough to plug the numerical result~30! into Eqs.~23! and
~24! to consistently close the equations. The problem is c
nected to the possible presence of arenormalizing scale-
independent stochastic variable in the multiplicati
process—thegn variable already discussed for the pass
scalar case. We already discussed that the presence of s
scale-invariant distribution changes only one overall cons
in the multiscale behavior. Moreover, we already know th
another unknown constant overallK shows up due to the
phases’ statistics. Summing the two effects, we can ass
that the true ratio C2 /C1 which must be plugged into the
equation of motion can be estimated by the result of TRM
~30! plus a multiplicative, unknown, constant,D independent
of the intermittency of the model:

C2

C1
5@120.44r5~s!#D. ~31!

Using Eqs.~23!, ~24!, and ~31!, we can compute the fifth-
order anomalyr55 logl(R) by solving the system of three
equations in three unknown,C2 ,C1 ,r5:

C11b2~11b!C1R21~r5!50, ~32!

@12~11b!xR21~r5!#C21b~11x!C11@R~r5!x2~11b!#

50, ~33!

C2 /C15D~120.44r5!. ~34!

To our knowledge, there are no simple theoretical argume
which can be used in order to fix the value ofD. We fix it by
assuming that forb520.4 we recover the value ofr5 com-
puted in the numerical simulations. It turns out thatD
50.85. We can then computer5 for all values ofb in the
range21,b,0. In Fig. 4 we show the computation ofr5
obtained by using Eqs.~32!–~34! together with the numerica
estimate ofr5 obtained by simulations of the shell model. A
one can see the results are in very good agreement with
numerical datafor the whole range of b.

In order to validate our results, we have compared
estimate of the anomalous anomalyr5 for the values ofb
andl corresponding to the curve:

FIG. 4. The values of the fifth-order anomalyr55z(3)1z(2)
2z(5) as a function ofb obtained from the TRMP closure ap
proach~continuous line! are compared with the numerical estima
coming from simulations of the shell model (1).
4-7
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l5
1

11b
. ~35!

Curve~35! is determined by the requirement that the seco
in-viscid invariant, beside the total energy(nun

2 , keeps the
physical dimensions of helicity,(n(2)nknuunu2 @20,21#. It is
known @22# that along this curve intermittency stay consta
Numerical estimate of Eq.~30! for different values ofl does
not show any appreciable difference with respect to wha
plotted in Fig. 3. Thus, we can still use Eq.~34! as a numeri-
cal estimate ofC2 /C1 with the same value ofD. In Fig. 5 we
show the comparison between the results of the closure
the special curve~35! and the values estimated by numeric
simulations. Again, the stochastic closure works perfec
allowing for a precise determination of the anomaly alo
this curve.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have discussed a possible strateg
compute the scaling exponent of a nonlinear shell mo
The main idea of this strategy is to assume that the statis
properties of the shell variablesun can be described in term
of a time-dependent random multiplicative process. A ma
ematical way to summarize this idea is the following. Let
define the random variableAn as

uun11u5Anuunu. ~36!

Let us also assume thatAn5lhn, where the random
variables hn fluctuate with probability distributionPn
5Zn@exp2V(hn)#. If we neglect time dynamics the probabi
ity distribution of the shell variables is given by the produ
PkPk . Time-dependent random multiplicative process p
vides well-defined correlations among the random variab
for different scales. One can therefore write

P~u1 ,u2 , . . . ,un , . . . !5Z•exp@2SnV~hn!1S i , jRi j hihj #.
~37!

OnceV(hn) is defined, the time dependency selects a uni
value of Ri , j . Formally we can writeRi , j5G i , j@V#. It fol-

FIG. 5. The values for the fifth-order anomalyr55z(3)
1z(2)2z(5) as a function ofb obtained from the TRMP closure
approach along the curvel51/(11b) ~continuous line! are com-
pared with the numerical estimate coming from simulations of
shell model (1).
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lows that in order to compute the scaling exponents we n
to computeV(hn). The role ofRi , j is crucial because it de
termines the full shape of the coefficients needed to comp
the fusion rules. Using the time average equation of moti
for the structure functions, we are therefore able to obtai
functional equation forV, whose solutions provide the
anomalous scaling exponents of the shell model. In orde
understand whether our strategy is providing reasonable
sults, we have assumed thatV(x) is a quadratic function ofx.
Thus, becausez(3)51, we have only one unknown to b
computed corresponding to the quadratic nonlinearity. W
this assumption, the functional equation forV reduces to an
equation for one unknown~the quadratic nonlinearity! which
we have solved. The results we obtain are in very go
agreement with the numerical simulation of the shell mod
We want to stress that the same procedure can be applie
the passive scalar advected by a random velocity field~the
Kraichnan model! with extremely good results and withou
any ad hocapproximation.

We want to highlight few points which we believe a
truely independent of the approximations we did in this p
per. ~i! The computations of the scaling exponents are f
sible if the fusion rules coefficient are known as a function
intermittency@i.e., the functionD(h) in the multifractal lan-
guage#. ~ii ! The fusion rules coefficient depends on interm
tency because of time dynamics.~iii ! Time-dependent ran
dom multiplicative processes are consistent with
dynamical deterministic structure of the equation of moti
and provide a useful tool to compute fusion rules coe
cients.

Nevertheless, it is not clear yet, if the stochastic proc
successfully applied here to close the equation of motion
fourth-order velocity correlation is also the optimal solutio
for higher-order correlation functions. In other words, o
has to face also the possibility that different fluctuatio
~controlling higher-order correlation functions! are described
by different stochastic processes.

In applying our strategy to the shell model we have p
formed a number of approximations. In particular we co
sider an important point to generalize our approach in or
to properly take into account the phase dynamics in the s
model. Also, the approximationCl5Dl should be considered
as a first order of approximation in order to develop a s
tematic theory. We also want to highlight two important to
ics for future research. First of all, we think that it is impo
tant to apply our method in the case of the Kraichnan mo
in two or more space dimensions. In order to perform suc
task we need to develop the field theory of time-depend
random multiplicative processes. Also, we need to hav
more detailed analytical control of time-dependent rand
multiplicative processes, following the ideas already d
cussed in Refs.@8,9#.
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