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Abstract

A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order
kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost
fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The
bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by
high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large
fluctuations of non-hydrodynamic fields.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent years, it has been speculated that modern developments in (discrete) kinetic theory might yield
a new angle of attack to the problem of turbulence modeling[1,2]. The rationale behind this idea is as follows.
All turbulence models based on the Navier–Stokes hydrodynamic equations work on the assumption of a scale
separation between the resolved and unresolved eddies[4–6]. By resolved eddies, we mean excitations at a scale
larger than the grid size of the simulation. Such an assumption is never satisfied in turbulent flows, particularly
close to solid boundaries, where turbulence production and removal are strongly unbalanced. This is the reason why
all eddy-viscosity models fail to reproduce accurately turbulent statistics in strongly non-homogeneous situations.
Kinetic theory is at a vantage point to describe such strongly out of equilibrium conditions, since it does not require
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any scale separation between the ‘fast’ and ‘slow’ degrees of freedom. We wish to emphasize that we are referring
to aneffectivekinetic theory dealing with the dynamics ofquasiparticles, i.e. effective degrees of freedom of the
turbulent flow[20–22].

In any eddy-viscosity model, the effect of small eddies on the large ones results in a typical diffusion process,
only with a much enhanced turbulent diffusivity. In contrast to eddy-viscosity, the kinetic approach is centered upon
the more general and fundamental notion ofrelaxation, controlled usually by a single characteristic time,τ entering
in the Boltzmann equation. The ratio between the relaxation time and the typical hydrodynamical time,τh, is called
the Knudsen number,Kn = τ/τh. In the limit of smallKn, the Boltzmann equation converges to the Navier–Stokes
equations[20,23]. The major question is: how to derive a suitable effective kinetic Boltzmann equation for the
dynamics of large scale in turbulent flows? In principle, such an equation should be derived ab initio through a
renormalization-group procedure, starting from the true Boltzmann equation for molecules. Preliminary attempts in
this ambitious direction look very encouraging, and yet not conclusive[7]. While waiting for a rigorous derivation,
a practical strategy is to resort to discrete versions of the Boltzmann equation, now known as lattice Boltzmann
equation (LBE), and endow it with a self-consistent relaxation operator[8]. The crucial asset of LBE is that it provides
a minimal form of kinetic theory compatible with the physics of turbulent flows, and such that it can be simulated
very efficiently on present-day computers. This approach, sometimes called LBE-τ, has been recently shown to
provide leading-edge numerical results for turbulent flows in real-life geometries[8]. Despite the impressive results,
these simulations leave many theoretical ends open, and ‘whether a theory can be developed remains to be seen’
[9]. Leaving aside the important issue of numerical efficiency, from a purely theoretical perspective, a relevant
question is whether the added value of the kinetic approach to fluid turbulence can be linked to the the dynamics of
non-hydrodynamic fields, high-order kinetic moments of the Boltzmann distribution, sometimes called ghost fields
[10–13]. Ghost fields represent the hidden kinetic information which, although necessary to guarantee the correct
local symmetries, does not normally emerge to the macroscopic scale. In this paper, we aim at investigating the
role of the dynamics of ghost fields in the kinetic approach to fluid turbulence. In particular, we focus our attention
on the effects of ghost fields on the small-scale statistics of high Reynolds number flows. Unfortunately, due to
limitations in computational power, it is still impossible nowadays to perform numerical simulation in the fully
developed turbulent regime. To reach high Reynolds numbers flows, with a clear separation between the energy
injection and the energy dissipation scales, one needs to resort to some model of turbulence. A popular class of
deterministic dynamical models, widely used in recent years, is given by “shell models”[14]. Shell models represent
the only example where flows at high Reynolds numbers, with realistic small-scale statistics, can be studied. They
are a good test-bed for new theories and numerical schemes aimed at improving the understanding of small-scale
turbulent behaviour. The paper is organized as follows. First, we propose a lattice Boltzmann scheme for shell
models. Second, we study analytically and numerically its hydrodynamical limit with particular emphasis on the
importance of ghosts fields for the small-scale dynamics. Finally, we present numerical and analytical results on
the “multi-relaxation” regime, i.e. the case when hydrodynamic fields and ghost fields have two different relaxation
properties to the local equilibrium.

2. Shell models

Shell models are the simplest dynamical systems featuring a realistic picture of energy transfer from large to
small scales[15,14]. The main advantage of shell models is that they can be analyzed in great depth via highly
accurate numerical simulations, which permit to resolve up to six decades in momentum space. They are nonlinear
deterministic models of Navier–Stokes equations, built such as to preserve energy, helicity and phase-space volume
in the inviscid and unforced limit. In this work, we shall focus on the following shell model[16]:

∂tUn = iknQn − νk2
nUn + Fn, (1)



R. Benzi et al. / Physica D 197 (2004) 303–312 305

where the nonlinear term is given by:

Qn = U∗
n−2Un−1 + 1

2bU
∗
n−1Un+1 + 1

4(1 + b)Un+1Un+2. (2)

In the above,Un is a complex variable representing the fluctuating velocity field at wavenumberkn = 2nk0, and
b is a free parameter fixing the physical dimension of the second inviscid invariant (here, we fixedb = −0.5). In
the presence of a large-scale forcingFn = Fδn,0, this model exhibits excellent scaling laws, from many aspects
indistinguishable from those of real turbulence. For example, thepth-order structure functions:

Sp(n) = 〈|Un|p〉 ∼ k−ζ(p)
n , (3)

are characterized by a set of scaling exponents,ζ(p), very close to those measured on turbulent flows. Many other
aspects, connected to the velocity probability density functions, energy dissipation statistics and multi-time multi-
scale correlation functions are also in good agreement with what measured in experimental and numerical studies of
Navier–Stokes equations. For these reasons, shell models have represented a unique occasion to investigate small-
scale turbulent statistics without the difficulties of the original Navier–Stokes equations. Despite their apparent
simplicity, a full systematic analytical control of the small-scale statistical behaviour is still lacking. Recently, a
series of promising closure attempts based on stochastic closures have been proposed[17–19]. Yet, they cannot be
considered conclusive. The importance of lattice Boltzmann schemes for the shell model (2) is therefore two-fold.
First, they may shed some lights on the complex multi-time dynamics of the hydrodynamical limit, second they
may be useful to control, and optimize, convergence to the hydrodynamic limit, which may be useful also for LB
schemes of Navier–Stokes equations.

3. LBE shell model

In this section, we shall develop a discrete kinetic model whose hydrodynamic limit is precisely the shell model
Eq. (2). To this purpose, we introduce a five-speed lattice Boltzmann scheme in the wavenumber space,kn, obeying
the following dynamic equations:

∂tfj(kn) + iknfj(kn) = −1

τ
(fj(kn) − f

eq
j (kn)), (4)

wherefj = [f0, f1, f2, f3, f4] is the discrete distribution associated to the discrete speedscj = [0,1,−1,2,−2].
The local equilibrium is given by:

f
eq
j (kn) = wj[Rn + cjUn + (c2

j − 1)Dn], (5)

wherewj = [6/12,2/12,2/12,1/12,1/12] are normalized weights. The equivalent of the macroscopic density
and velocity fields are defined as follows:

Rn =
4∑
j=0

fj(kn), Un =
4∑
j=0

fj(kn)cj. (6)

The third macroscopic field, the analogue of the traceless momentum flux tensor, must be adjusted in such a way
as to reproduce the nonlinear termQn in the shell model. After simple algebra, one derives:

2Dn + Rn = Qn. (7)

Let us notice that the shell model equations we want to mimick are written in terms of a complex variable,Un.
Therefore, here thefj(kn)’s loose the nature of probability density functions they usually have in LB schemes in real
space (complex distribution functions have been already used in the past to simulate quantum mechanics[24,25]).
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The first consequence is that in order to keep the “macroscopic density” for shelln, Rn, constant in time, one
has to modify the streaming term in (4) for rest particles as follows:

∂tf0(kn) = −ikn(2f3(kn) − 2f4(kn) + f1(kn) − f2(kn)) − 1

τ
(f0(kn) − f

eq
0 (kn)). (8)

By a linear transformation, we move to the momenta representation for the stress tensor,Sn = ∑
j fj(kn)c

2
j , and

two ghost fields,An = f4(kn) − f3(kn) andBn = f3(kn) + f4(kn). The resulting equations are:

∂tRn = 0, (9)

∂tUn = iknSn, (10)

∂tSn = iknUn + 6iknAn − 1

τ
(Sn −Qn), (11)

∂tAn = 2iknBn − 1

τ

(
An − 1

3
Un

)
, (12)

∂tBn = 2iknAn − 1

τ

(
Bn − 1

4
Qn

)
. (13)

The set ofEqs. (9)–(13) is our kinetic shell model. From the first three equations, we obtain:

∂tUn + τ∂ttUn = iknQn − τk2
nUn − 6τk2

nAn. (14)

This is the master equation of our treatment. First of all, we inspect its hydrodynamic limit. To this purpose, we
notice that in the limitτ → 0 the ghost fieldAn collapses onto its attractor, the velocity field:

lim
τ→0

An = 1
3Un, (15)

so that (14) delivers:

∂tUn = iknQn − 3τk2
nUn − τ∂ttUn. (16)

It is therefore seen that, upon neglecting the termτ∂ttUn, which is indeed higher order in the Knudsen number,
the correct shell model is reproduced in the limitKn → 0, with the ghost field contributing a factor 2τ to the flow
viscosity. A perturbative expansion inτ of all fields appearing in (14), reveals that the effect of ghost fields at second
order inKn, yields a non-conservative contribution of the form:

τ2k3
nQn. (17)

The finite-Knudsen regime is therefore characterized by the interplay ofthreedistinct terms, namely:

knQn (inertial term), (18)

τk2
nUn (dissipative term), (19)

τ2k3
nQn (ghost contribution). (20)

Dimensional matching of these competing terms delivers the relevant crossover scales in Fourier space:

• Dissipative scale (dissipation = inertia):

kd ∼ 1

τ3/4
. (21)
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• Ghost scale (ghost term = inertia):

kg ∼ 1

τ
. (22)

These relations show thatkg ∼ kg/τ
1/4 � kd for τ � 1, which means that the ghost fields cannot play any role

on the dissipation properties of the system since they do not reach up to the dissipative scale. In order to elicit a
non-trivial role for the ghost fields, we need to realize the conditionkg < kd. This necessarily leads to a generalized
LBE in which ghost fields relax on their own timescale, longer than the hydrodynamic one. The minimal such
choice is to definetwo relaxation times:τν andτg, for hydrodynamic and ghost fields respectively. Since we aim at
a fully turbulent regime, we shall consider forτν the smallest possible values compatible with grid resolution. The
relaxation time for the ghost field will then be changed in order to investigate its effects on the dissipation properties
of the system.

4. Multi-relaxation shell BGK model

The simplest multi-relaxation kinetic shell model takes the following two-time form:

∂tRn = 0, (23)

∂tUn = iknSn, (24)

∂tSn = iknUn + 6iknAn − 1

τν
(Sn −Qn), (25)

∂tAn = 2iknBn − 1

τg

(
An − 1

3
Un

)
, (26)

∂tBn = 2iknAn − 1

τg

(
Bn − 1

4
Qn

)
. (27)

This set of equations is easily reproduced by going back to earliest LB formulations, in which collisional effects were
taken into account through a scattering matrixMji describing the interaction between thejth andith populations:

∂tfj(kn) + iknfj(kn) = Mji(fi(kn) − f
eq
i (kn)). (28)

Following the top-down procedure introduced in[26], we can construct a scattering matrix with eigenvaluesλ =
{0,0,−1/τν,−1/τg,−1/τg} and a corresponding set of kinetic eigenvectors,V

(k)
j , k = 0,4, associated with the set

of fieldsRn,Un, Sn,An, Bn, respectively:

fj(kn) = RnV
(0)
j + UnV

(1)
j + SnV

(2)
j + AnV

(3)
j + BnV

(4)
j .

This corresponds to a partition of the five-dimensional kinetic space into a hierarchy of two conserved quantities
(Rn,Un), one quasi-conserved (transport) quantity (Sn) and two ghost fields (An,Bn). Using (24) and (25), we
obtain:

∂tUn = iknQn − τνk
2
nUn − 6τνk

2
nAn − τν∂ttUn, (29)

where the dependence onτg is implicitly hidden within the fieldsAn andUn. It is worth pointing out that at this
stage we are still dealing withexactequations. In order to get a first guess on the dynamics of ghost fields in this
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case, we make the approximation of imposing steady-state conditions on the ghost field equations (26) and (27):

0 = 2iknBn − 1

τg

(
An − 1

3
Un

)
, (30)

0 = 2iknAn − 1

τg

(
Bn − 1

4
Qn

)
. (31)

This yields:

An = Un

3P(knτg)
+ iknτgQn

2P(knτg)
, P(knτg) = 1 + 4k2

nτ
2
g. (32)

This steady-state approximation must be understood as an estimate for the mean value of the fields. We show later,
by direct numerical simulations ofEqs. (23)–(27), that the prediction extracted out of (30) and (31), yields the
correct qualitative and quantitative statistical behaviours. It is also quickly checked that in the limitτg = τν � 1,
the relation (32) reduces to the expression (15), as it should. For further analysis, it proves convenient to explore
the behaviour of (32) in the two regimes of small and large scales separately.

4.1. Large scales

Settingτg = 1, large scales are identified by the conditionkn � 1. In this regime, the denominator of (32)
simplifies,P(knτg) → 1, and we obtain:

−6τνk
2
nAn ≈ −3ik3

nτgτνQn − 2τνk
2
nUn. (33)

Upon substituting this in the master equation (29), we get:

∂tUn = iknQn(1 − 3ik2
nτgτν) − 3τνk

2
nUn − τν∂ttUn. (34)

It is therefore apparent that, sinceτν � τg = 1 andkn � 1, the relative correction to the convective term, 3τgτνk
2
n,

is negligible. As a result, we come to the conclusion that the large-scale regime is virtually uncontaminated by the
ghost fields.

4.2. Small scales

Small scales are identified by the conditionkn � 1, again with the positionτg = 1. In this regime, the denominator
P(knτg) is dominated by thek2

n term, so that the master equation delivers:

−6τνk
2
nAn ≈ −3ikn

τν

τg
Qn − 2τν

τ2
g
Un. (35)

Upon substituting in (29), we obtain:

∂tUn = ikn

(
1 − τν

τg

)
Qn − τνk

2
nUn − 2τν

τ2
g
Un − τ∂ttUn. (36)

From this expression, we notice that the renormalized convective term is still conservative, with a renormalized
factor 1− τν/τg ∼ 1. The viscous term becomes−τνk2

nUn, corresponding to a viscosityν = τν, i.e. three times
lower than in the previous case. Apart from the usual second-order time derivative of the velocity field, the remaining
piece,−2τν/τ2

gUn, is a sub-leading damping term, due to the combined effect of high wavenumbers and long ghost
relaxation time. In other words, ghosts can act at scales larger than the dissipative scale, but their amplitude is
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suppressed by a factorτν/τg and consequently they gently disappear from the scene, leaving the system with the
bare ghost-free viscosityτν. Summarizing, the present analysis leads to the following predictions:

• Hydrodynamic scenario: τg = τν � 1, ghost fields are enslaved to their local equilibrium values. They contribute
an extra term 2τν to the fluid viscosity and do not affect the convective terms to any appreciable extent. At small
but finite Knudsen numbers they are confined to sub-dissipative scales only and cannot produce any further
appreciable effect. As a result, the correct hydrodynamic limit is recovered, with an enhanced viscosityν = 3τν.

• Non-hydrodynamic scenario: τν → 0, τg = 1, ghost fields are no longer enslaved to the fluid velocity. They
receive contributions from the velocity field and the nonlinear termQn at all scales through the propagator
P(knτg). As a result, they exhibit high-frequency, small-amplitude fluctuations, which do not affect the large-
scale behaviour of the system because they are suppressed by aτν/τg factor. The correct hydrodynamic limit is
still recovered, with a bare viscosity three times smaller than in the previous case,ν0 = τν.

5. Numerical results

The theoretical scenario discussed in the previous section has been tested against numerical simulations of the
kinetic shell model. As a first test, we have simulated the kinetic shell model in the hydrodynamic regime, namely
τν = τg = 5 × 10−4, with kn = 2n−13, n = 1,25. For the sake of a quantitative comparison, the same simulations
have been repeated with the original shell model (1) (with a viscosityν = 3τν). In Fig. 1, we show the energy spectra
for the two cases.

An excellent agreement between the LB and the shell model simulations is observed across thewhole range
of scales, except for scales well inside the dissipative range. In the inset ofFig. 1, we also present a check of the
enslaving relation (15) by plotting the ratio between the ghost field and the velocity field, 3Re(An)/Re(Un) for two
typical wavenumbers, at large scales,n = 6 and at small scales close to the dissipative cut-off,n = 18. Notice how

Fig. 1. Comparison between the original shell model and our LB model. We plot log2〈|Un|2〉 vs.n for the shell model with viscosityν = 3τν
(+) and the LB kinetic model withτν = τg = 5 × 10−4 (×). Both models have the same forcing acting on the first two shells. Inset: check of the
ghost-velocity slaving in the hydrodynamic regime. We plotRe(3An(t))/Re(Un(t)) vs. t for shell indexn = 6 (straight line) andn = 18 (dotted
line) with τν = τg = 5 × 10−4. Notice the small deviation observed at the smallest scale.
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Fig. 2. Velocity spectra for hydrodynamic and non-hydrodynamic LB regime. We plot log2〈|Un|2〉 vs.n for the LB model with the following
choice of parameters:τν = τg = 5 × 10−4 (+) andτν = 5 × 10−4, τg = 1 (×). Notice the increase of the inertial-range extension in the multi-
relaxation LB model because the ghost field () is completely negligible at small scales. Inset: check of the ghost-velocity slaving in the
non-hydrodynamic regime. We plotRe(3An(t))/Re(Un(t)) vs.t for shell indexn = 6 (straight line) andn = 18 (dotted line) withτg = 1. Notice
now, at difference from the case ofFig. 1, that the velocity and the ghost fields at small scales are decoupled, being the overall intensity of the
ghost field negligible.

Fig. 3. Analysis of the flatnessF (p)
n = 〈Up

n 〉/〈U2
n〉p/2 for different values ofp. We plot log2 F

(4)
n vs.n in our kinetic model for the following

choice of parameters:τν = τg = 5 × 10−4 (×) andτν = 5 × 10−4, τg = 1 (+); to emphasize the correct behaviour of the system we also plot
the same quantity in the case of the original shell model with viscosityν0 = τν ( ). Inset: the same cases but for the sixth-order flatness

F
(6)
n = 〈U6

n〉/〈U2
n〉3

.
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the relation (15) is perfectly verified at large scales, while some, small, deviation from slaving is observed at the
end of the inertial range. This confirms our theoretical analysis, namely that ghost fields are completely enslaved
to their equilibrium values and do not affect the hydrodynamic behaviour of the turbulent system. Only strongly
dissipative physics is affected by the ghost dynamics. The global stability is not changed.

More interesting, is to explore numerically the non-hydrodynamic regime,τg ∼ O(1). We have performed a set
of simulations with,τν = 5 × 10−4, τg ∼ O(1). The corresponding spectra for the velocity field are shown inFig. 2,
where the caseτν = τg is also reported to highlight the effect of the reduced viscosity fromν = 3τν to ν0 = τν.
As predicted by our theoretical analysis, the LB model in the non-hydrodynamic regime reproduces turbulent shell
dynamics with the correct hydrodynamic viscosityν0 = τν while the ghost field tends to decrease in intensity by
going to smaller and smaller scales. Now ghosts are decoupled from the velocity fluctuations and the enslaving
relation (15) is no longer satisfied. Still, they do not have any significant impact on the dynamics of the velocity
field because their intensity is negligible (see inset ofFig. 2).

A deeper insight into the role of ghost fields at all scales, inertial and dissipative, can be gained by inspecting
the structure functions (3). In particular, inFig. 3, we show the fourth- and sixth-order flatnessF

(4)
n = 〈U4

n〉/〈U2
n〉2

andF (6)
n = 〈U6

n〉/〈U2
n〉3 as a function ofn for the hydrodynamic and non-hydrodynamic regime. The shell model

results are also presented. First, we observe that both quantities have a clear dependency on the scale, that is a sign
of intermittency in the velocity statistics. Second, all numerical results agree in the two regimes, the only difference
being an increased inertial range extension when ghosts fields decouple.

6. Conclusions

Summarizing, we have presented a detailed analysis of the effects of non-hydrodynamic (ghost) fields on the
statistical properties of hydrodynamic turbulence, within the framework of shell models. As a first result, we have
shown that if ghost fields relax on the same timescale as the hydrodynamic one,τg = τν (the common scenario
in current real-space LB simulations), then in the hydrodynamic limit where this scale is sent to zero, the ghost
fields contribute to the hydrodynamic viscosity with a ratio 2:1 with respect to the weight of the hydrodynamic
fields:ν = 2τg + τν. Higher-order ghost contributions, at finite relaxation times, are segregated to sub-dissipative
scales, so that no further effects on the hydrodynamic behaviour can result. The non-hydrodynamic ‘overtake’
scenario (kg < kd) can be realized by allowing ghost fields a longer lifetime than hydrodynamic modes. It is then
found that ghost fields donot spoil the inertial physics (large scales) up to a negligible correctionτν/τg. The
dissipative properties of the turbulent system are also reproduced, but now without the ghost contribution, leading
to an hydrodynamic bare viscosity smaller than in the previous case:ν0 = τν.

Our analysis supports the counter-intuitive notion that letting ghosts ‘alive’ on long timescales leads to a reduction
of the viscosity, as compared to the case in which ghosts are frozen to their hydrodynamic equilibria.

Once extrapolated to the framework of real-space lattice Boltzmann models, our findings provide a motivation
towards multi-relaxation models, as opposed to the currently popular single-time relaxation BGK model. This come-
back of multi-relaxation models has been invoked by other groups as well[27], based on motivations of improved
(linear) stability.

It is tempting to speculate that real-space LB simulations of two and three-dimensional turbulence might profit
by moving (back) to a multi-relaxation scenario in which the hydrodynamic scale is kept to its minimum fixed by
grid resolution, while the ghost field timescale is made much longer.

One can also argue that, if the ghost fields acquire any hydrodynamical meaning, one must increase the dimension
of the underlying hyper-lattice in order to recover isotropy. Alternatively one has to demonstrate that the non-isotropic
contributions correspond to subdominant terms.

On a similar vein, one may speculate that making the hydrodynamic and ghost timescales respond self-consistently
to turbulence observables, but with distinct functional dependencies, may prove beneficial also for LBGK-τ simu-
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lations with turbulence modeling[8]. As a final remark, our results provide a clear evidence that the hydrodynamic
manifold is very robust against large fluctuations of non-hyrodynamic fields.
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