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We define a random process for the construction of multiaffine fields. given the scahng exponents for the structure 

functions. The difference with analogous proccsscs for positive defined multifractal mcasurcs is stressed. In particular our 

methods can be used for the study of the scaling laws exhibited by the velocity field in three dimensional fully developed 

turbulence. We also discuss the probability distribution functions for the increments of the signal in the scaling range. 

1. Introduction 

Positive defined multifractal measures have an 

important role in many physical phenomena. In 

the context of chaotic dynamics, the build up of 

these measures on the invariant set of a system 

(e.g. a strange attractor) is well understood [l- 

31. Moreover, simple probabilistic models (for 

instance the random beta model [l] or the two 

scale Cantor set) have been proposed to gener- 

ate them recursively. A multifractal measure 

dp(x) is characterized by the scaling of the 

coarse-grained weight 

p,(f) = dF 3 I (‘1 

where the set supporting the measure is par- 

titioned in boxes A, of size 1. The signature of 

multifractality is the anomalous power law for 

small I: 

(2) 

with a non-constant function dq. 

The situation is much less clear for the scaling 

of field increments, such as the height of growing 

interfaces or the velocity in three dimensional 

fully developed turbulence. In order to avoid a 

misleading terminology, we shall call multiaffine 

the fields Q(x) whose structure functions scale as 

(]@(X + Y) ~ @(,)l~‘)-& , (3) 

where ( ) is a spatial average, r varies in an 

appropriate scaling range and the exponent [,, is 

a non-linear function of q. The problem of field 

increments is the playground where the multi- 

fractal formalism was originally proposed by Par- 

isi and Frisch [4], who considered the anomalous 

scaling of the velocity increments rather than the 

scaling of the energy dissipation (which is a 

positive defined measure [5]). The random beta 
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model [l, 31 was introduced as a practical im- 

plementation of their ideas, but actually it only 

generates a multifractal measure without con- 

structing the corresponding velocity field. In fact, 

the statistical properties of the velocity field U(X) 

are obtained from the scaling exponents of the 

energy dissipation density e(x) (i.e. dp = 

E(X) dx), via the dimensional relation 

We)’ 
1 

- q(x) = $ E(Y) d’y 

Here 6u.,(f) = (u(x + I) - u(x)], Ai is a box of 

size 1 centered in x and - means that the two 

quantities have the same statistical properties. It 

follows from dimensional counting 

&=(:q-l)$,+3- 3s. (5) 

Multiplicative processes like the random beta 

model can be used to determine the generalized 

dimensions d, and hence the I& in terms of few 

free parameters (typically two or three). These 

models permit to obtain very good fits of the 

experimental or numerical data but give no in- 

formation on the feature of the velocity fields. 

In this paper we introduce a method to gener- 

ate a multiaffine field in any dimension with a 

previously assigned set of exponents {, for the 

structure functions. In the one dimensional case 

a different model has been recently introduced 

by Vicsek et al. [6] but the generalization to the 

multidimensional case seems to us rather dif- 

ficult. We believe that it is important to have the 

possibility to generate a multiaffine signal with 

given scaling exponents in order to hope to 

provide a dynamical mechanisms for the expla- 

nation of intermittency in three dimensional tur- 

bulence. Moreover the existence of an algorithm 

for the construction of multiaffine fields is rel- 

evant to test new methods for the treatment of 

experimental data. Finally, multiaffine fields are 

interesting not only in turbulence but also in 

various growth phenomena, like ballistic deposi- 

tion, growth of thin films by vapor deposition, 
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two phase viscous flow in porous media, sedi- 

mentation of granular material [7]. 

The paper is organized as follows. In section 2 

we discuss the algorithm used to construct the 

multiaffine function. In section 3 we present the 

analytical results concerning the scaling be- 

haviour while section 4 contains some numerical 

results including the probability distribution 

functions of the increments of the signal in the 

scaling range. Section 5 contains the conclusions 

and a summary of the open problems. 

2. The definition of the multiaffine field 

In this section, we shall discuss how to define a 

one dimensional multiaffine process. The analy- 

sis of its scaling behaviour will be done in the 

next section. The construction proposed here 

could be extended straightforwardly in two or 

more dimensions. 

Our algorithm for the construction of a mul- 

tiaffine function is a generalization of the recur- 

sive method used for obtaining a self-affine func- 

tion. Indeed, it can be proved [8] that the 

function 

Q(x) = lili% nzNymE”]I - exp(i27ry”x)l 

x exp(i$,,) , with y > 1 , (6) 

is a self-affine function, i.e. the increments 

F( rl) = ) @(x + yl) - @(x)) have the same statis- 

tical properties as yhF(I), if the phases 4, are 

independent identically distributed random vari- 

ables in the interval [0,2n]. It follows 

( F(I)Y) - liy , with i, = hq . (7) 

If there are an ultraviolet and an infrared cut-off, 

i.e. the index II in the sum runs from 0 to N + 1, 

the scaling properties (7) hold only for an appro- 

priate range of scales y PN @ 1 G 1. 

Let us now consider our algorithm for the 

construction of multiaffine functions. For this 
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purpose, we shall consider Q(X) 

following wavelet decomposition: 

@(xl = c c a,.,$,.,(4 
,=-z k--z 

where 

I//,,&) = 2”‘$(2’X - k) , 

given by the 

(8) 

(9) 

and r/~(x) is the basis function with zero mean. In 

the discrete case, for N = 2” points X, in the 

interval [0, 11, the sums in (8) are restricted from 

zero to n - 1 for the index j and from zero to 

2’ - 1 for li. 

If the basis function verifies certain properties, 

the functions +jj.k will satisfy the following ortho- 

gonality conditions: 

and form a complete set of functions in L’. A 

review and an introduction to the properties of 

orthogonal wavelet decomposition can be found 

in [9-111. In the following we will not need the 

orthogonality property. 

The set of coefficients CZ,,~ forms a dyadic 

structure as shown in fig. 1. We remark that in 

the discrete case the number of independent 

coefficients is N - 1, as it should be, because the 

wavelet I,!J has zero average. In the case of signals 

with non-zero average, a constant term must be 

included. 

Fig. 1. The dyadic structure of the wavelet coefficients cx, i. 

Let us now define our algorithm. Consider the 

random variable n with probability density dis- 

tribution P(n) and construct the following mul- 

tiplicative process: 

and so on. The T,,~ are independent random 

variables having the same distribution P(n). the 

coefficient LY,~,~~ is arbitrary and E,,~ = -+ 1 with 

equal probability. The general term is CY,,,. = 

E,.~ ~,,~a,_ l.k, with k’ = [ ik]. It is easy to show 

that l~,.~l are random variables with moments 

The bar denotes the average over the ensemble 

of the realizations of the multiplicative process. 

Let us remark that the moment in (12) does not 

depend on k. In general, the scaling behaviour of 

the coefficients CY,,~ does not imply that Q(x) is 

multiaffine. However, from a heuristic point of 

view, one could guess that structure functions 

are power laws and calculate the exponents by 

supposing that the scaling properties at scale 

r - 2-l are dominated by the jth term in the sum 

of eq. (8). This leads to 

(I@(x + 1) - @(x)1”) - licj , 

with i, = -log2(T”) - $4 (13) 

This argument will be confirmed in the next 

section. 

The generalization of our algorithm to more 

than one dimension is straightforward. Following 

[9], the three dimensional field Q(X) is decom- 

posed as 

I,k,.kz.k3 q=l 

where the index j refers to the dilation factor, 
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the indices k’s to translations in the three pos- 

sible directions and the index q is needed to take 

into account the internal degrees of freedom. 

The coefficients (Y (.‘) ,,k,,k2,k3 are obtained by a mul- 

tiplicative process in the same spirit as in the one 

dimensional case. The condition of zero diver- 

gence can be imposed either by using diver- 

genceless wavelets [12] or, as usual, in Fourier 

space. 

3. Scaling behaviour of the signal 

In order to show that Q(x), defined in the 

previous section, is multiaffine we first consider 

the second order structure function. 

S,(r) = ([@(x + 4 - @(x)1") 7 (15) 

where ( ) represents spatial average. Using the 

wavelet decomposition (8) and (9) we obtain 

S,(r) = (z { CY,,~~~‘~[$(~~X + 2’r - k) 

- $(2’x - k)]}2). (16) 

Next we can observe that in our construction CY, k 

are uncorrelated random variables with zero 

mean. Using the self-averaging property of the 

multiplicative process we have defined, i.e. the 

equivalence between spatial and ensemble aver- 

age, we obtain 

S2(y) = c 2’(~:,~ ([ I,!J(~‘x + 2’r - k) 
i.k 

- 442’~ - k)l*) > (17) 

where the bar denotes ensemble average. The 

mean in the previous equation can be evaluated 

as 

([$(2’x + 2’r - k) - $(2/x - k)12) = 2-‘G,(2’r) , 

(18) 

where G,(r) = ][$(x + r) - I,!J(x)]~ dx. Substitut- 

ing (18) into (17) we obtain 

2 
S,(r) = E a ,,k2’ G,(2’4 > 

I 
(19) 

2 
where we have used the fact that the (Y, k are 

independent of k and there are 2’ different val- 

ues of k for a fixed j. By using (19) we can 

establish the scaling of S,(r): 

S,(2r) = c ~~;,~2j G,(2’+‘r) 
I 

=X2 l(‘OgZT+l) G2(2,+Lr) 

I 

= 2-(1°g27+1) c 2(j+l)(lOS2~+1) G2(21+lr) 

I 

= cqr) 2-w&7+1) (20) 

The variable n has been defined in the previous 

section. It follows that 

S,(r) m ri2 with iZ=-log,T-1. (21) 

The naive arguments at the end of the previous 

section correctly captures the scaling exponent, 

at least for the second moment. 

In the same way we can compute the scaling of 

the fourth moment S,(r). After a long but 

straightforward computation we obtain 

4’ 
S,(r) = C Q ,,k2’ G,(2’r) + 3$(r) 7 

i 
(22) 

where G4(r) = ~[I,!J(x + r) - $(x)1” dx. By the 

same manipulations leading to (21) we finally 

have 

S,(r) = A,ri4 + 3A2r212 , (23) 

with 5, = -log2n4 - 2. For r @ 1 and using the 

convexity of the function 5, we have ri4 s r2i2 so 
that 

S,(r),m rc4 . (24) 
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As it is clear from (22) and (23), one can 

easily generalize the above computations for the 

cumulant structure functions Si,l(r) defined by 

the relation 

(exp{z[@(X + r) - @(x)]}) = exp(C F) , 
” 

(25) 

The functions S;,(r) satisfy the scaling 

s;,,(r) m rcr,, ) (26) 

with 5,” = -log,v2” - n. For re 1, due to the 

convexity of I&, , the leading contribution to S*” is 

given by S;,,(r). We have therefore shown that 

Q(x) is multiaffine. 

We conclude this section with the following 

remark. In section 1 we defined a signal as 

multiaffine if structure functions obtained per- 

forming a spatial average on a single realization 

have anomalous scaling. We stress that it is 

possible to have 

(I~(~+,)-~(,)I’/)-,i,, (27) 

with a nonlinear iq even if the single realizations 

have no anomalous scaling. An example is pro- 

vided by the following simple generalization of 

(6): 

G(X) = ,Jnn~ % a,,[ 1 - exp(i2n2”x)l exp((i+,,) , 
,I = N 

(28) 

where the a,, are obtained by an uncorrelated 

multiplicative process a, = a,_, b, and b, are 

independent identically distributed random vari- 

ables. Numerical computations are in agreement 

with the rough heuristic argument presented at 

the end of section 2 and one has & = -log?? 

while for a single realization there is no anomal- 

ous scaling and the single exponent is -log,b. 

Let us remark, finally, that the diadic structure 

(11) chosen for the multiplicative process is not 

the unique possibility. It is possible that also 

more complicated fragmentation processes in- 

duce a multiaffine scaling in the signal. While the 

absence of correlation, along the vertical struc- 

ture of the tree, seems to be a necessary condi- 

tion in order to obtain a scaling behaviour, there 

are not a priori restriction on the type of correla- 

tion along the horizontal direction (that spanned 

by the k index of the LY,~ coefficients). 

4. Numerical results 

In the previous section we have shown that the 

function Q(x) defined in section 2 satisfies the 

multiaffine scaling (3), with &, = -log2nP - i y. 

Now we want to give a numerical example of 

Q(x) and its scaling behaviour. For this purpose 

we consider I/J(X) to be the mexican-hat function 

obtained by differentiation of a Gaussian: 

where v is the characteristic width of the Gauss- 

ian. Let us note that, although this choice does 

not produce an orthonormal set of functions, the 

scaling behaviour (26) is ensured. The width (T of 

the $(x) is chosen to be slightly smaller than the 

initial interval where the signal is defined. 

Next we construct Q(x) by discretizing (8) in 

the interval [0, l] on a lattice of N = 21h points 

x, : 

The a,.k are defined according to the rule given 

in section 2, with probability P(n) = y S(n - 

Q) + (1 ~ y) S(q - n,). A typical realization of 

@(x,) with y = 0.125, Q = 2-“*, n, = 2m5’” is 

given in fig. 2. To check the multi-affine scaling 

we have made 50 different realizations of 4(x) 

and by averaging over them we have computed 

the structure functions S,(r) and the connected 
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j 
~2 “,‘I” “1”~‘,“‘~ 

0 0.05 0.1 0.15 0.2 

X 

Fig. 2. A typical realization of the multiaffine signal. The 

multiplicators assume two values: 2mr’h with probability 0.875 

and 2-‘” with probability 0.125. 

structure functions S:(r) defined in the previous 

section. The theoretical and experimental scaling 

exponents are given in fig. 3, while in fig. 4 we 

show S,(r). The scaling exponents are consistent 

with the results discussed in section 3. Finally we 

mention that the energy spectrum has a scaling 

region with the correct exponent - 1 - i;. 

We have calculated the probability distribution 

function (PDF) of the variables &Q(x) = @(x + 

I) - G(x). Fig. 5 shows that it exhibits the typical 

shape of the PDF for the transverse velocity 

2.0 

1.5 

*_al.O 

0.5 

0.0 1, ’ ’ ’ ’ ’ ‘-1 
0 2 4 6 6 10 

P 

Fig. 3. The scaling exponents function lp. The continuous 
curve is the prediction obtained by the arguments of section 3 

and the crosses are the measured values. 

2.5 

x 

-10.0 ,,,,~,,,/~,,/,l,,,,1,, 

-10 -7.5 -5 -2.5 0 

Log(r) 

Fig. 4. The natural logarithm of the fourth order structure 

function S,(r) vs the natural logarithm of the scale. The slope 

of the line is given by (13). 

-6 
-5 0 5 

A,+ /<(A,@)2>1/2 

Fig. 5. Probability distribution functions of the increments of 

the multi-affine signal normalized in order to have unit 

variance. The signal is defined on 216 points in the interval 

[0, 11. The solid curve is a Gaussian reference curve, the 

crosses refer to a distance 2m8 and the squares to a distance 

2-Y 

increments obtained in three dimensional turbul- 

ent flows at high Reynolds numbers [13]. For 

large 1, the PDF is nearly Gaussian, while on 

small scales the PDF becomes more and more 

peaked around zero with relatively high tails 

(corresponding to the presence of strong inter- 

mittency in the velocity gradients and hence in 

the energy dissipation). 
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5. Conclusions 

In this paper we have shown how to define an 

algorithm to construct multiaffine fields based on 

wavelet decomposition. The idea underlying our 

approach is the definition of the coefficients of 

the wavelet in terms of a multiplicative process. 

Considering the one dimensional case, the wave- 

let coefficients ff,,k are random variables such 

that the moments of their absolute values I’Y,,~/ 

are multifractal. We have shown, both analitical- 

ly and numerically, that structure functions ex- 

hibit power laws with anomalous scaling. We 

remark that our algorithm can be used to con- 

struct multiaffine fields with a priori definition of 

the scaling properties in any dimension. 

The multiaffine functions considered in this 

paper do not satisfy any local scaling, that is to 

say for any point x the quantity (@(x + r) - 

a(x)] has no scaling property in r. The original 

approach by Parisi and Frisch [4] should be 

considered only in a statistical sense. Recently 

there have been some attempts to extract expo- 

nents of local scaling from turbulent signal 

[14,15]. In the multiaffine function considered in 

this paper this approach is meaningless because, 

by construction, the scaling exponents can be 

identified only in a statistical sense and not 

locally. 

Concerning orthogonal wavelet decomposi- 

tion, we argue that a statistical analysis of wave- 

let coefficients of three dimensional turbulent 

signals coming from experiments or numerical 

simulations could give many interesting insights. 

For example, we expect that the moments of the 

coefficients have a dominant scaling behaviour 

consistent with the one observed for structure 

functions. However it is a matter of interest to 

see if the presence of different subdominant 

terms leads to a better scaling behaviour of the 

moments of wavelet coefficients with respect to 

structure functions. In our opinion, it is also 

important to study the probability distribution of 

the ratios 1 a, ~, ,k I/ I CY,,~ 1, looking in particular for 

a possible scale invariance of such probability. In 

real turbulence it is not difficult to imagine a 

certain degree of correlation among the wavelet 

coefficients at various scales. Such a correlation 

could be introduced also in the construction of 

the multiaffine signal, for instance, by consider- 

ing a Markov process for the multiaffine variable 

77 of section 2. 

Finally, a dissipation range could be intro- 

duced in our algorithm by using the same ideas 

discussed in [13]. In this way a signal with the 

correct statistics for a,@(~) can be generated and 

compared with outcomes from experiments and 

simulations. 
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