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Abstract

The problem of anisotropy and its effects on the statistical theory of high Reynolds number(Re) turbulence (and
turbulent transport) is intimately related and intermingled with the problem of the universality of the (anomalous)
scaling exponents of structure functions. Both problems had seen tremendous progress in the last 5 years. In this
review we present a detailed description of the new tools that allow effective data analysis and systematic theoretical
studies such as to separate isotropic from anisotropic aspects of turbulent statistical fluctuations. Employing the
invariance of the equations of fluid mechanics to all rotations, we show how to decompose the (tensorial) statistical
objects in terms of the irreducible representation of theSO(d) symmetry group (withd being the dimension,d = 2
or 3). This device allows a discussion of the scaling properties of the statistical objects in well-defined sectors of
the symmetry group, each of which is determined by the “angular momenta” sector numbers(j,m). For the case
of turbulent advection of passive scalar or vector fields, this decomposition allows rigorous statements to be made:
(i) the scaling exponents are universal, (ii) the isotropic scaling exponents are always leading, (iii) the anisotropic
scaling exponents form a discrete spectrum which is strictly increasing as a function ofj . This emerging picture
offers a complete understanding of the decay of anisotropy upon going to smaller and smaller scales. Next, we
explain how to apply theSO(3) decomposition to the statistical Navier–Stokes theory. We show how to extract
information about the scaling behavior in the isotropic sector. Doing so furnishes a systematic way to assess the
universality of the scaling exponents in this sector, clarifying the anisotropic origin of the many measurements that
claimed the opposite. A systematic analysis of direct numerical simulations (DNS) of the Navier–Stokes equations
and of experiments provides a strong support to the proposition that also for the non-linear problem there exists
foliation of the statistical theory into sectors of the symmetry group. The exponents appear universal in each sector,
and again strictly increasing as a function ofj . An approximate calculation of the anisotropic exponents based on
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a closure theory is reviewed. The conflicting experimental measurements on the rate of decay of anisotropy upon
reducing the scales are explained and systematized, showing that isotropy is eventually recovered at small scales.
© 2005 Published by Elsevier B.V.
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1. Introduction

The statistical theory of fluid turbulence is concerned with correlation functions of the turbulent velocity
vector fieldu(x, t) wherex is the spatial position andt the time[1]. Since the velocity field is a vector,
multi-point and multi-time correlation functions are in general tensor functions of the vector positions
and the times. Naturally, such functions have rather complicated forms which are difficult to measure
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and to compute. Consequently, almost from its very beginning, the statistical theory of turbulence was
discussed in the context of an isotropic and homogeneous model. The notion of isotropic turbulence was
first introduced by Taylor in 1935[2]. It refers to a turbulent flow, in which the statistical averages of every
function of the velocity field and its derivatives with respect to a particular frame of axes are invariant to
any rotation in the axes. This is a very effective mathematical simplification which, if properly used, can
drastically reduce the complexity of the theory. For this reason, it was very soon adopted by others, such
as Kármán and Howarth[3] who derived the Kármán–Howarth equation (see below), and Kolmogorov
[4,5] who derived the4

5 law (re-derived below). In fact, most of the theoretical work in turbulence in the
past 60 years was limited to the isotropic model.

Experimentally, however, we know that isotropy holds only as an approximation with a varying degree
of justification. In all realistic flows, there always exists some anisotropy at all scales; the statistical
properties of the velocity field are effected by the geometry of the boundaries or the driving mechanism,
which are never rotationally invariant[6–14]. For example, all geophysical flows are subject to the rotation
of the globe, which introduces anisotropy via the Coriolis forces[15–17]. Therefore, a realistic description
of turbulence cannot be purely isotropic and must contain some anisotropic elements. Yet the problem
is that once we take anisotropy into account, we face a drastic increase in the complexity of the theory.
The number of variables that is needed to describe the common statistical quantities, such as correlation
functions and structure functions of the velocity field, increases a lot. For example, under shear there is
a characteristic length scale, which can be constructed from the typical velocity and the typical shear
[8,18]. This length has to be considered in order to distinguish those scales where the turbulent evolution
is mainly dominated by the inertial effects of fluid mechanics or by the direct input of energy due to the
anisotropic shear[19–22]. Similarly, all dimensional estimates acquire a significant degree of ambiguity
because of the proliferation of different dimensional quantities related to the parameters of anisotropy.
As a consequence of these inherent difficulties the existing anisotropic effects were simply ignored in
many of the experimental and simulational studies of statistical turbulence. This attitude gave rise to
ambiguous assessments of important fundamental issues like the universality of the scaling exponents in
turbulence.

The standard justification for ignoring anisotropic effects is that the basic phenomenology, since the
pioneering works of Kolmogorov[4,5], predicts arecovery of isotropyat sufficiently small scales of the
turbulent flows. Nevertheless, both recent experimental works and theoretical analysis suggested that the
actual rate of recovery is much slower than predicted by simple dimensional analysis, pointing out even the
possibility that some anisotropic correlation function, based on velocity gradients, staysO(1) for anyRe
[7,23–26]. In order to settle these kind of problems, theoretically or experimentally, it is crucial to possess
systematic tools to disentangle isotropic from anisotropic fluctuations and to distinguish among different
kinds of anisotropic fluctuations. Thus a central challenge in the theory of anisotropy in turbulence is
the construction of an efficient mathematical language to describe it. Without a proper description, the
complexities of the formalism can soon obscure the physical content of the processes that we wish
to study.

The problem of anisotropy is not disconnected from the other fundamental problem which has to do
with the nature of universality in turbulence. By universality, we mean the tendency of different turbulent
systems to show the same small-scales statistical behavior when the measurements are done far away
from the boundaries. Consider, for example, the longitudinal two-point structure function

S(2)(r) ≡ 〈�u2
�(x, r, t)〉, �u�(x, r, t) ≡ r̂ · [u(x+ r, t)− u(x, t)] , (1)
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with r̂ being the unit vector in the direction ofr, and〈·〉 stands for an appropriate ensemble average. This
function shows essentially the same dependence on the separation vectorr, whether it is measured in the
atmospheric boundary layer, in a wind tunnel or in a DNS, provided it is measured for sufficiently small
separations and far from the boundaries. This high degree of universality cannot be expected if anisotropic
fluctuations were the dominant contributions to the two-point structure functions. Different boundary
conditions and different forcing mechanism necessarily introduce different large-scale anisotropies in
the flow, which would translate to different small-scale anisotropic fluctuations. Small-scale universality
can be achieved only if anisotropic fluctuations are sub-leading with respect to the isotropic fluctuations.
In the following, we also discuss which aspects of the anisotropic fluctuations areuniversaland which
are not. We will see that some aspects of the anisotropic fluctuations depend on the boundary conditions
while other aspects do not. In fact, we will show that scaling exponents are universal whereas amplitudes
depend on the boundary conditions.

In the last 5 years, tremendous progress in the understanding of the two aforementioned problems,
i.e., finding a mathematical language that properly describes anisotropic turbulence and its universal
properties has been achieved. Not surprisingly, the two problems are closely related, as it often happens
in physics—a problem becomes considerably simpler if described in the proper mathematical language.
The technical core of these recent achievements is theSO(3) decomposition[27]. This tool enjoys the
advantages of being mathematically simple, yet very powerful and systematic. By using it, many of the
mathematical complexities of dealing with anisotropy in turbulence and in other hydrodynamic problems
are greatly simplified. The principal idea is to represent the main statistical observables, such as structure
functions and correlation functions, in terms of their projections on the different(j,m) sectors of the
group of rotations. It can be applied to all the statistical quantities in turbulence, creating a detailed profile
of the effects of anisotropy. Additionally, and perhaps more importantly, theSO(3) decomposition reveals
some new universal properties of fully developed turbulence. It is expected that each sector of theSO(3)
group has its own universal exponents. In particular, it is shown that the exponents associated with the
anisotropic sectors are larger than the isotropic exponents, in accordance with the isotropization of the
statistics as smaller and smaller scales are observed.

As already mentioned, theSO(3) decomposition is useful also to investigate isotropic and anisotropic
fluctuations in other hydrodynamic problems. In particular, we will focus on the case of scalar and
vector quantities passively advected by a turbulent velocity field. In these cases, one may often elevate
the phenomenological assumptions made for turbulent anisotropic fluctuations to the status of rigorous
statements[28]. By using a systematic decomposition in different sectors of theSO(3) group one may
show that passive scalars, advected by stochastic self-similar Gaussian velocity fields, always possess
isotropicleadingsmall-scale fluctuations. Moreover, one may quantitatively distinguish among different
kinds of anisotropies, assessing their rate of decay by going to smaller and smaller scales. It turns out
that the rate ofrecovery of isotropyis typically much slower than expected on the basis of dimensional
analysis. Moreover, all different anisotropic fluctuations decay in a self-similar way but with different
rates; the scaling exponents being universal, while prefactors are non-universal[29]. The very same can
be rigorously proved for the passive advection of vector-like quantities, as for the case of magnetic fields
when the feedback on the velocity evolution due to the Lorentz force is neglected. There, the vector
nature of the transported quantity leads to an even richer, and more complex, list of possible anisotropic
fluctuations[30,31]. Another important problem which we address in detail is the case of the passive
advection of a vector-like incompressible quantity, i.e. apassive vector with pressure[32]. Although
without any counterpart in nature, such a system is particularly interesting because it can be seen, for
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some aspects, as the closestlinearapproximation to the non-linear Navier–Stokes evolution. For example,
it allows to study in a systematic way some problems connected to the convergence of integrals involving
the pressure term. Similar technical problems arise also in the analysis of both isotropic and anisotropic
multi-point velocity correlations in Navier–Stokes equations.

Of course, a significant part of this review will be devoted to applications of the theoretical and technical
tools to physical experimental data[10,13,33–37]and numerical data sets[18,38–42]. In order to exploit
the entire potentiality of theSO(3) decomposition one needs to measure the whole velocity field,u(x), in a
three-dimensional volume. This is because in order to disentangle different projections on different sectors
one needs to integrate the given correlation function against the proper eigenfunction of the rotation group
on the 3d sphere of radiusr. By doing that, the exact projection on each different sector of theSO(3)
decomposition is under control, with the only practical limitations for reaching highly anisotropic sectors
being the lack of resolution of highly fluctuating angular properties. At the present stage of experimental
capabilities the exact decomposition can be carried out explicitly only in data sets coming from DNS. Here
the velocity field in the whole testing volume is available. For experimental data, the best way to exploit
theSO(3) decomposition is to either select observables with vanishing isotropic components, in order to
focus directly on anisotropic sectors, or to perform a multi-sector analysis, i.e. to fit simultaneously the
isotropic and anisotropic components.

The review is organized as follows. Section 2 offers a historical review of isotropic turbulence. We
present a modern derivation of the exact results pertaining to the third-order structure function and the
celebrated45 law. We review the standard theory for all correlation functions, and discuss the experimental
difficulties with the isotropic theory. These difficulties included apparent persistence of anisotropies into
the small scales for highRe, apparent location dependent scaling exponents, etc. In Section 3 we review
the history of attempts to deal with anisotropy. In Section 4, the technical basis of theSO(3)decomposition
is introduced focusing on the particular statistical problems of anisotropic fluctuations discussed in the
previous section. Then, in Section 5 we switch to studyexactly solvablehydrodynamic problems with
emphasis on either those aspects peculiar to each different model and to those features in common with the
non-linear Navier–Stokes case. Among the common aspects we cite the possibility to study in these models
in full detail the foliation of the equations of correlation functions in different anisotropic sectors; the
universality of isotropic and anisotropic exponents; the hierarchical organization of exponents—leading
to recovery of small-scales isotropy. At the end of this section, we present closure results for two-point
turbulent structure function in the anisotropic sectorsj =2,4,6. In Section 6, the utility of this language
is demonstrated by discussing experimental data in atmospheric boundary layer and on homogeneous-
shear flows. In Section 7, we present the analysis of anisotropy in DNS of typical strongly anisotropic
flows. Two cases are discussed in depth: channel flows and random Kolmogorov flows, the latter being
homogeneous flows stirred at the large scales. Section 8 presents a summary and conclusions. Technical
details are collected in the appendices.

2. Historical review: isotropic turbulence

In the first two sections we present a historical review. We start with the model of homo-
geneous isotropic turbulence, and then turn to previous attempts to treat theoretically anisotropy in
turbulence.
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2.1. Homogeneous and isotropic turbulence

The Navier–Stokes equations for the velocity field are invariant to all rotations:

�u(x, t)

�t
+ [u(x, t) · ∇]u(x, t)=−∇p(x, t)+ ��2u(x, t) ,

∇ · u(x, t)= 0 (2)

withp(x, t)and�being the pressure and kinematic viscosity, respectively. Since the gradient and Laplacian
operators are both rotationally invariant, the rotation symmetry of the equation can be broken only by
anisotropic forcing terms or anisotropic boundary conditions. Rather naturally then the statistical theory
of turbulence was mostly developed in the framework ofisotropic turbulence[2]. The central idea of this
approximation is that the statistical average of any function of the velocity components in any coordinate
system is unaltered if this coordinate system is rotated or reflected in any manner. The assumption of
isotropy was widely adopted. In 1938, Kármán and Howarth[3] used it to explore the second- and third-
order correlation functions of the velocity field. Their use of tensor notation was more elegant and compact
than that used by Taylor. It enabled them to derive some constraints on these correlation functions and
express them in terms of a few scalar functions. For example, for the second-order correlation function
in homogeneous turbulence

C��(r, t) ≡ 〈u�(x+ r, t)u�(x, t)〉 , (3)

they used the representation

C��(r, t)= [f (r, t)− g(r, t)]r̂�r̂� + g(r, t)��� , (4)

and then derived a linear differential relation betweenf (r, t) andg(r, t) using the solenoidal condition
of ��C

��(r, t)= 0,

2f (r, t)− 2g(r, t)=−r �f (r, t)

�r
.

This means that under the assumption of isotropy, and using the solenoidal condition, the second-order
correlation function can be written in terms of one scalar function instead of nine. Similarly, Kármán and
Howarth analyzed the third-order correlation function by representing it as an isotropic tensor and then
reducing the number of scalar functions using the solenoidal condition. They were also able to connect
it to the second-order correlation function in decaying turbulence using the Navier–Stokes equations.
These computations have since found their way into every standard text-book on the statistical theory of
turbulence.

The mathematical representation of isotropic turbulence has reached its most elegant and powerful
form in a paper by Robertson from 1940[43]. Robertson provided a systematic way to represent isotropic
tensors using the theory of invariants. For example, to derive the general representation (4) in the stationary
case using Robertson’s method, we consider thescalarfunction

C(a, b, r) ≡ C��(r)a�b�

with a andb being two arbitrary vectors. IfC��(r) were an isotropic tensor,C(a, b, r) would preserve
its functional form upon an arbitrary (simultaneous) rotation of the three vectorsr, a, b. Using invariant
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theory, Robertson deduced thatC(a, b, r) must be a function of the six possible scalar products(r · r),
(r · a), . . . and of the determinant[rab] ≡ ε���r

�a�b�. Additionally, by definition, it must be a bilinear
function ofa andb and therefore must have the following form:

C(a, b, r)= A(r)(r · a)(r · b)+ B(r)(a · b)+ C(r)[rab] ,

whereA(r), B(r) andC(r) are arbitrary functions. Finally, recalling thatC(a, b, r) is the contraction of
C��(r) with a andb, we find that

C��(r)= A(r)r�r� + B(r)��� + C(r)ε���r� .

If we further demandC��(r) to be invariant to improper rotations as well (i.e., rotations plus reflections),
we can drop the skew-symmetric partε���, thus retaining a representation which is equivalent to Eq. (4).

2.2. The4
5 law in isotropic turbulence and its generalization

By using the isotropic representation of the third-order correlation function, in 1941 Kolmogorov proved
the “four-fifth law” well inside the inertial range of a fully developed turbulence. This law pertains to
the third-order moment of longitudinal velocity differences, stating that in homogeneous, isotropic and
stationary turbulence, in the limit of vanishing kinematic viscosity� → 0

〈[�u�(x, r, t)]3〉 = −4
5 ε̄r ,

whereε̄ is the mean energy flux per unit time and mass,ε̄ ≡ �〈|∇�u�|2〉. The fundamental assumption
needed to derive this law is the so-called “dissipation anomaly” which means that the dissipation is finite
in the limit � → 0. As noted in[5], “this is one of the most important results in fully developed turbulence
because it is both exact and non-trivial. It thus constitutes a kind of ‘boundary condition’ on theories of
turbulence: such theories, to be acceptable, must either satisfy the four-fifth law, or explicitly violate the
assumptions made in deriving it”.

To demonstrate how isotropy helps in deriving this result, we present a re-derivation in which we will
obtain an additional exact relation that appears to have the same status as the four-fifth law, pertaining
to homogeneous, stationary and isotropic turbulence with helicity[44,45]. Defining the velocityv(x, t)
asv(x, t) ≡ u(x, t) − 〈u〉 we consider the simultaneous third-order tensor correlation function which
depends on two space points:

J �,��(r) ≡ 〈v�(x+ r, t)v�(x, t)v�(x, t)〉 . (5)

We show that in the limit� → 0, under the same assumption leading to the fourth-fifth law, this correlation
function reads[45]

J �,��(r)=− ε̄

10

(
r���� + r���� − 2

3
r����

)
− h

30
(ε���r

� + ε���r
�)r� , (6)

where��� is the Kronecker delta andε��� is the fully antisymmetric tensor. The quantityh is the mean
dissipation of helicity per unit mass and time,

h ≡ �〈(∇�u�)(∇�[∇× u]�)〉 ,

where repeated indices are summed upon. In the derivation below it assumed thath remains constant
when� → 0 in the same spirit of the dissipation anomaly[46–48]. The first term in Eq. (6) is just the
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4/5 law. The new part of result (6) can be also displayed in a form that depends onh alone by introducing
the longitudinal and transverse parts ofu: the longitudinal part isu� ≡ r(u · r)/r2 and the transverse part
is ut ≡ u− u�. In terms of these quantities we can present a “two-fifteenth law”

〈[�u�(x, r, t)] · [ut(r + x, t)× ut(x, t)]〉 = 2
15 hr

2 . (7)

We note that this result holds also when we replaceu by v everywhere.
To derive result (6) we start from the correlation functionJ �,��(r) which is symmetric with respect to

exchange of the indices� and� as is clear from the definition. In an isotropic homogeneous medium with
helicity (no inversion symmetry), the most general form of this object is[45]

J �,��(r)= a1(r)[���r
� + ���r

� + ���r
�] + ã1(r)[���r

� + �l��r� − 2���r
�]

+ b2(r)[ε���r
� + ε���r

�]r� + a3(r)[���r
� + ���r

� + ���r
� − 5r�r�r�/r2] .

This general representation is invariant to the choice of orientation of the coordinates. Not all the co-
efficients are independent for incompressible flows. Requiring�J �,��(r)/�r� = 0 leads to two relations
among the coefficients:(

d

dr
+ 5

r

)
a3(r)= 2

3

d

dr
[a1(r)+ ã1(r)],

(
d

dr
+ 3

r

)
[5a1(r)− 4ã1(r)] = 0 .

As we have two conditions relating the three coefficientsa1, ã1 anda3 only one of them is independent.
Kolmogorov’s derivation related the rate of energy dissipation to the value of the remaining unknown.
Here the coefficientb2 remains undetermined by the incompressibility constraint; it will be determined
by the rate of helicity dissipation.

Kolmogorov’s derivation can be paraphrased in a simple manner. Begin with the second-order structure
functionS̃(2)(r) ≡ 〈|u(x+ r)−u(x)|2〉. Computing the rate of change of this (time-independent) function
from the Navier–Stokes equations (2) we find

0= �S̃(2)(r)

2�t
=−D(2)(r)− 2ε̄+ �∇2S̃(2)(r) , (8)

whereD(2)(r) stems from the non-linear term(u ·∇)u and as a result it consists of a correlation function
including a velocity derivative. The conservation of energy allows the derivative to be taken outside the
correlation function:

D(2)(r) ≡ �

�r�
〈u�(x, t)u�(x+ r, t)[u�(x, t)−u�(x+ r, t)]〉 . (9)

In terms of the function of Eq. (5) we can write

D(2)(r)= �

�r�
[J �,��(r, t)− J �,��(−r, t)] . (10)

Note that Eq. (5) is written in terms ofv rather thanu, but using the incompressibility constraint we can
easily prove that Eq. (9) can also be identically written in terms ofv rather thanu. We proceed using
Eq. (8) in Eq. (10), and find

D(2)(r)= 2
�

�r�
r�[5a1(r)+ 2ã1(r)] . (11)
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For r in the inertial interval, and for� → 0, we can read from Eq. (8)D(2)(r)=−2ε̄ and therefore have
the third relation that is needed to solve all the three unknown coefficients. A calculation leads to

a1(r)=−2ε̄/45, ã1=−ε̄/18, a3= 0 .

The choice of the structure functioñS2(r) leaves the coefficientb2(r) undetermined, and another cor-
relation function is needed in order to remedy the situation. Since the helicity isu · [∇ × u], we seek a
correlation function which is related to the helicity of eddys of scale ofr:

T (2)(r) ≡ 〈[u(r + x, t)− u(x, t)] · [∇× u(x+ r, t)− ∇× u(x, t)]〉 .

Using the Navier–Stokes equations to compute the rate of change of this quantity we find

0= �T (2)(r)

2�t
=−G(2)(r)− 2h− �∇2T (2)(r) , (12)

which is the analog of (8), and where

G(2)(r)= {〈u(x, t) · [∇r × [u(x+ r, t)× [∇r × u(x+ r, t)]]]〉}
+ {term r →−r} . (13)

The conservation of helicity allows the extraction of two derivatives outside the correlation functions.
The result can be expressed in terms of definition (5):

G(2)(r)= �

�r�

�

�r�
ε���ε���ε���[J �,��(r)+ J �,��(−r)] .

Substituting Eq. (8) we find

G(2)(r)= 2
�2

�r��r�
b2(r)[r�r� − ���r

2] ,

which is the analog of Eq. (11). Using Eq. (12) in the inertial interval in the limit� → 0 we find the
differential equation

r2 d2b2(r)

dr2
+ 9r

db2(r)

dr
+ 15b2(r)=−h

2
.

The general solution of this equation isb2(r) = −h/30+ �1r
−5 + �2r

−3. Requiring finite solutions
in the limit r → 0 means that�1 = �2 = 0. Accordingly we end up with Eq. (6). The moral of this
example is thateven in isotropic and homogeneous systems there exist sub-leading termswhich can
become dominant for specially selected objects like (7). Recently, a direct numerical simulation aimed
at measuring the “two-fifteenth law” was presented in[49] with a good agreement with the theoretical
prediction. Once anisotropy exists, there are many more (in fact, infinitely many) sub-leading contributions
that need to be assessed carefully. Similar results for slightly different correlation functions have also been
found in[50,51].
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2.3. Kolmogorov’s theory for second, fourth, and higher-order structure functions

Unfortunately, the exact result pertaining to the third-order structure function is rather unique. The
moment we consider second, fourth or higher-order correlation functions there is no exact result for the
scaling exponents. Kolmogorov’s 1941 theory states that, forRe large enough, small-scales turbulent
fluctuations should recover isotropy and homogeneity (if measured far enough from boundaries) and
should possess universal scaling properties depending only on the mean energy flux,ε̄. For homogeneous
and isotropic ensembles one defines

S(n)(r) ≡ 〈�un�(x, r, t)〉 = (ε̄r)n/3f (n)

(
r

L0
,
	

r

)
, (14)

whereL0 and	 are the integral length scale and the viscous scale, respectively. The functionf (n) is
supposed to be well behaved in the limit of infinite Reynolds numbers for fixed separation,r: limx,y→0 f

(n)

(x, y)= const . In this limit, the celebrated K41 scaling prediction for structure functions in the inertial
range,	>r>L0, follows:

S(n)(r) ∼ C(n)(ε̄r)

(n)

with 
(n) = n

3
. (15)

In (15) the constantsC(n) depend only on the large scale properties. Because of stationarity, the mean
energy flux in Eq. (15) can be equally taken to be the mean energy input or the mean energy dissipation.

Kolmogorov’s theory goes beyond the scaling prediction (15). For example, any non-vanishingpth-
order structure functions, including purely transversal and mixed longitudinal–transversal velocity incre-
ments, must possess the same scaling exponents:

S(n,m)(r) ≡ 〈�un�(r)�umt (r)〉 ∼ C(n,m)(ε̄r)(n+m)/3 , (16)

wherep= n+m, �ut(r) ≡ �u(r)− �u�(r)r̂, and�ut(r) is one of the components of the two-dimensional
transverse velocity difference. Note that due to the assumption of isotropy, only even combinations of
transversal increment in (16) have a non-vanishing average. It is also not difficult to extend the K41
reasonings to describe also correlation functions at the viscous scales, i.e. observables based on gradients
statistics[52,53].

2.4. Experimental difficulties with the isotropic theory

On the whole, experimental tests of Kolmogorov’s theory ran into increasing difficulties when the
data were analyzed with greater detail. The first systematic attempt to check the isotropic scaling (15)
for high Renumber turbulence was[54]. These authors performed a high statistical test of K41 theory
by going beyond the usual two-point correlations. They measured structure functions of higher order,
reaching good evidence that there existanomalousdeviations from the scaling exponents (15). Their data
substantiate a power-law behavior with
(n) �= n/3. At that time, and for many year later, the situation was
very controversial both theoretically and experimentally. There appeared many claims that the observed
deviations were due to sub-leading finite-Reynolds effects. One should not underestimate the difficulties
of getting reliable estimates of the scaling exponents. First, one must expect finite Reynolds numbers
corrections which maystronglyreduce the inertial range where scaling laws are expected or introduce
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anisotropic corrections to the isotropic K41 predictions. Both effects are usually present in all experiments
and numerical simulations. Nowadays, state-of-the-art experiments of turbulence in controlled geometries
reach a maximumRe numbers measured on the gradient scales,�−1 = 〈|∇u|〉/〈|u|〉, of R� ∼ 5000
whereR� = �U/� andU is the typical large-scale velocity. In atmospheric flowsR� can be as high
asR� ∼ 20,000 but at the expense of high anisotropy. More complex is the situation of DNS where
the best resolution ever reached up to now is 40963 [55], corresponding to aR� ∼ 1100. DNS allow
a minimization of the anisotropic corrections, by implementing periodic boundary conditions and fully
isotropic forcing, something which is not experimentally feasible. However, also in DNS the discrete
symmetries induced by the finite lattice spacing do not allow for perfect isotropic statistics. We thus
either have high-Reynolds-numbers experiments which are strongly perturbed by anisotropiceffects, or
DNS isotropic flow at moderate Reynolds numbers. Therefore, one has to face the problem of how to
disentangle isotropic from anisotropic fluctuations and how to extract information on the asymptotic
scaling with a finite—often short—inertial-range extension. Only recently, after many experimental and
numerical confirmations of the results of[54], the situation became clearer[56]. We may affirm now
with some degrees of certitude that the isotropic scaling exponents areanomalous, the K41 prediction

(n) = n/3 is wrong, except forn = 3 which is fixed to be
(3) = 1 by the exact 4/5 law. Moreover,
the possibility of showing analytically the existence of anomalous scaling in turbulent advection[28],
definitely eliminated those arguments supporting theimpossibilityof having aRe-independent anomalous
scaling in any hydrodynamic system. From a phenomenological point of view, it is easy to extend the
K41 theory to include anomalous scaling. Already Kolmogorov noticed, after Landau’s criticism in 1962,
that it is unrealistic to expect the isotropic inertial range fluctuations to depend only on themeanenergy
dissipation,̄ε. Kolmogorov proposed in 1962[57] employing the coarse-grained energy dissipation over
a box of sizer,

ε̃(r, x)= 1

r3

∫
|y|<r

dy ε̄(x+ y) , (17)

to match the correct dimensions of structure functions in (14), the so-called refined Kolmogorov
hypothesis:

S(n)(r)= C(n)〈ε̃n/3(r)〉rn/3 . (18)

This hypothesis connects the deviation from the K41 prediction,
(n)− n/3= �(n/3), to the anomalous
scaling of the coarse-grained energy dissipation:〈ε̃n/3(r)〉 ∼ r�(n/3). Anomalous scaling of isotropic
structure functions is therefore connected to the multifractal properties of the three-dimensional energy
dissipation field[5]. It should be noted however that the refined Kolmogorov hypothesis related inertial
range scaling to scaling of dissipative quantities, and delicate issues connected to small distance expan-
sions and fusion rules are being disregarded here[58,59]. At any rate, the relation presented by Eq. (18)
did not advance the calculation of the scaling exponents beyond crude phenomenology.

2.5. Persistence of anisotropies

A central issue of K41 phenomenology is the assumption ofreturn-to-isotropyfor smaller and smaller
scales. Recently, this assumption had been put to test in experiments and simulations[10,24,39,60]. A
useful experimental set-up to test the return to isotropy is ahomogeneousshear flow[6] where the large-
scale mean velocity has a linear profile:V= (V0y,0,0). The shear is given bySij = �iVj = �iy�jxV0.
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We thus have a homogeneous but anisotropic flow, close to the ideal case for studying the influence of
large-scale anisotropies on the small-scale statistics. “Small scales” are defined here in comparison to
the characteristic shear length,LS= ε̄1/3/S; for r>LS we may expect that anisotropic fluctuations are
sub-leading with respect to the isotropic ones. The caser?LS is of interest in situations where the shear
is very intense, as very close to the walls in bounded flows. In such cases we expect a dramatic change
from the K41 phenomenology[19,21,22]. Fortunately, it is not that difficult to design experiments or
DNS possessing an almost perfect linear profile with homogeneous shear[7,19,24,60]. A popular way to
measure small-scales anisotropies is to focus on theRedependence of isotropic and anisotropic statistical
observables built in terms of velocity gradients. For example, due to the symmetries of the mean flow,
gradients of the stream-wise component in the shear direction,�yux , may have a skewed distribution due
only to the anisotropic fluctuations; they have a symmetric PDF in a perfectly isotropic flow. A natural
measure of the residual anisotropy at small scales as a function ofReis the mixed generalized skewness
based on gradients:

M(2n+1)(R�)
〈(�yux)2n+1〉

〈(�yux)2〉(2n+1)/2
. (19)

These objects vanish in isotropic ensembles. Of course, at finite Reynolds numbers one expects that the
large-scale anisotropy introduced by the shear still remains, even on the gradient scale. Therefore, the rate
of decay of (19) as a function ofReis a quantitative indication of the rate of decay of anisotropy at small
scales. In the next section, we review Lumley’s dimensional argument[8] for anisotropic fluctuations
which predicts

M(2n+1)(R�) ∼ R
−1/2
� , ∀n . (20)

In fact, both numerical[23,24] (at low Reynolds numbers) and experimental tests (up toR� ∼ 1000)
showed a clear disagreement with the dimensional prediction (20). For example in[7] the authors quote a
decay in agreement with the prediction forM(3)(R�), an almost constant behavior as a function ofRefor
the fifth order,M(5)(R�) ∼ O(1) and anincreasingbehavior for the seventh orderM(7)(R�) ∼ R+0.63

� !
These results have cast a severe doubt on the fundamental assumption of the K41 theory. Similar results,
with even more striking contradictions with the hypothesis of the return-to-isotropy, have been measured
in the problem of passive scalar fluctuations,� = T − 〈T 〉, advected by an isotropic velocity field in
the presence of a mean homogeneous scalar gradient,∇〈T 〉 = (g,0,0). The equation of motions for the
passive advected field in this case are

�t�+ u · ∇�= gux + �2� .

Both experimental and numerical data show a strong disagreement with the prediction that general-
ized skewness of temperature gradients becomes smaller upon increasing Reynolds and Peclet numbers
[61–66].

We will show below how the analysis based onSO(3) decomposition and its theoretical consequences
settles this puzzle of strongpersistence of anisotropies[39]. In fact, contrary to what appears, the K41
phenomenology with its assumption ofreturn-to-isotropyand the above experimental results are not at
all in contradiction (see Section 6.2.1).
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2.6. Longitudinal and transversal isotropic structure functions

Another debated issue concerning the K41 phenomenology and its multifractal generalization (18) has
to do with the observed discrepancies between the scaling properties of longitudinal, transversal, and
mixed longitudinal–transversal structure functions in (supposedly) isotropic fully developed turbulence
[34,67–70]. As previously stated, K41 theory, for isotropic flows, predicts the same scaling behavior, in
the limit of highRe, independent of the Cartesian components of the velocity increments in the structure
functions. For a given orderp with p =m+ n, only the prefactors in (16) may depend on the particular
choice ofn andm. Let us denote with
(n,m) the scaling exponent of the mixed structure function (16)
made ofn longitudinal increments and ofm transversal increments in a isotropic ensemble:

S(n,m)(r) ∼ C(n,m)r
(n,m)

.

For p<4 the issue does not exist; due to the incompressibility constraint all second- and third-order
longitudinal or transversal structure functions have the same scaling in a isotropic ensemble. Forp>3
many experiments and numerical simulations found that
(n,m) < 
(n

′,m′) if n<n′ andm>m′ whenn+
m=n′+m′. It appears that with increasingm the scaling exponents reduce (the signal is more intermittent).
The largest difference for a structure function of orderp is therefore achieved when we compare the purely
longitudinal scaling
(p,0) with the purely transversal scaling
(0, p). Other experimental data suggest
the possibility of aslow tendency of the longitudinal and transversal scaling exponents to coalesce for
increasingRe[71–73].

We will argue below that the experimental measurements of different exponents stems from anisotropic
corrections that affect differently the longitudinal and transverse components. In other words, by not
removing the anisotropic contributions, one cannot expect pure power-law behavior. The situation is
more complex for the analysis of data from DNS. There, one may implement highly isotropic forcing
and boundary conditions, such that in most cases any residual anisotropic effects may safely be neglected
even at moderateRenumbers. On the other hand, state-of-the-art numerical simulations are still strongly
limited in the maximumRe achievable. Only very recently reliable data with high statistics became
available at resolution 10243 [69], while most of the previous DNS where limited to lower resolutions.
At resolution of 10243 one reaches a moderateR� ∼ 400, far below many experiments. Because of the
consequent limited extension of the inertial range, such DNS did not resolve the puzzle of longitudinal
vs. transversal scaling. The numerical results oscillate between evidence for different scaling properties
and for its opposite[67,69,74–76]. The issue is complicated by the fact that longitudinal and transversal
structure functions possess different finiteReeffects. For example, in[69] it was shown that structure
functions of different order have different dependence on the viscous cut-off; this introduces ambiguity in
defining a common inertial range where power law is expected. We thus propose that until high resolution
isotropic measurements became available, all evidence for different scaling exponents for longitudinal
and transverse structure functions should be considered with suspicion.

2.7. Position-dependent scaling exponents

In some inhomogeneous simulations and experiments it was claimed that the measured scaling expo-
nents depended on the point of measurement within the flow domain[9,21,22,77–80]. If true, such finding
would deal a death blow to the idea of universality of the scaling exponents in turbulence. It should be
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stressed that in all the examples where such findings were reported the flow contained strong anisotropic
and inhomogeneous components and/or the scaling range was not sufficient to actually present direct
log–log plots for the structure functions vs.r. In some of these cases, scaling was extracted by using
the method called “extended self-similarity” (ESS)[56]; the use of this method can be dangerous in
presence of anisotropic and inhomogeneous effects. Whenever strong anisotropies are present one has to
distinguish among two scaling ranges. At scales larger than the shear length, the energy cascade mech-
anism of the Kolmogorov theory is overwhelmed by shearing effects[19,22]. Only for scales smaller
than the shear length is the meaning of anisotropic corrections to the isotropic K41 scaling theory well
posed. We argue below that the reported position-dependent isotropic exponents in the latter case stem
from anisotropic components which appear with different amplitudes at different points in the flow. The
different “exponents” that were measured were not real exponents but the result of a crossover between
the isotropic and anisotropic corrections. Once the data are projected onto the isotropic sector the leading
exponents become position independent as expected.

3. Historical review: attempts at anisotropy

3.1. Batchelor’s approach

The first systematic approach to anisotropy in turbulence was suggested by Batchelor in 1946[81].
Batchelor did not attempt to describe the most general form of anisotropy in turbulence, but instead
confined himself to the easier case ofaxisymmetric turbulence. In axisymmetric turbulence the mean
value of any function of the velocity field and its derivatives is invariant to all rotations of the axes in a
given direction. Therefore, the anisotropy in axisymmetric turbulence is induced by a single direction in
space. We denote this symmetry axis by the unit vectorn. Being the easiest case of anisotropic turbulence,
axisymmetric turbulence was the main model for studying anisotropy in subsequent years.

Batchelor used the invariant theory in order to take the anisotropy vectorn into account in the tensor
representations. His method is simple: add the vectorn to the list of vectors in Robertson’s method. For
example, suppose we wish to construct an axisymmetric representation of the second-order correlation
functionC��(r) defined in (3). Then, just as in the isotropic case, we create a scalar function by contracting
the two indices ofC��(r) with two arbitrary vectora andb, with the difference that now we assume that
the resultant scalar function depends on the unit vectorn as well as on the other vectorsr, a andb. We
therefore look for an invariant representation of the scalar functionC(r, n, a, b), which depends only on
the different scalar productsr · r, r · n, r · a , . . . and the various determinants[rna], [rnb] , . . . . For some
reason, Batchelor decided to ignore the skew-symmetric parts and considered only the scalar products.
Using the fact thatC(r, n, a, b) is a bilinear function ofa andb, Batchelor found that

C��(r)= Ar�r� + B��� + Cn�n� +Dn�r� + Er�n� ,

whereA,B,C,D,E are functions of the amplituder and of the scalar productr̂ · n. Note that in this
expansion the number of unknowns has grown from two to five with respect to the isotropic expansion. It
would have been nine, had we taken the skew-symmetric parts into account. Indeed, a prominent charac-
teristic of anisotropic representations is that they are far more complex than their isotropic counterparts.

Using this sort of representations, Batchelor was able to generalize Kármán–Howarth results to the case
of axisymmetric turbulence. That is, after representing the second- and third-order correlation functions
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in terms of few scalar functions, Batchelor used the solenoidal condition and the Navier–Stokes equations
to derive some linear differential relations among them.

3.2. Chandrasekhar and Lindborg’s approaches

A somewhat more elegant approach to axisymmetric turbulence was offered a few years later by
Chandrasekhar[82]. Chandrasekhar’s treatment is similar to Batchelor’s in following Robertson’s work
[43]. Chandrasekhar took advantage of the skew-symmetric tensorε��� for creating a representation of
solenoidal axisymmetric tensors. He noted that the curl of an axisymmetric tensor automatically satisfies
the solenoidal condition. Therefore, by representing the second- and third-correlation functions as a curl
of auxiliary tensors, Chandrasekhar automatically solved the solenoidal equations, and was left with
the dynamical equations (which are derived from the Navier–Stokes equation) only. Chandrasekhar’s
dynamical equations are considerably simpler than those of Batchelor. Nevertheless, they are still very
complicated and this, perhaps, explains why there was no serious attempt to continue Chandrasekhar’s
work in subsequent years.

In 1995 there was another attempt to formulate the kinematics of homogeneous axisymmetric turbulence
in [83]. The representation in this paper was “experimentally oriented”, in the sense that the scalar
functions that are used can be measured directly in experiment. To accomplish that, one defines two
auxiliary unit vectors (that were also used in[84]): e1(r) ≡ n× r/|n× r|, e2(r) ≡ e1(r)× n. The triplet
(n, e1, e2) is an orthonormal basis ofR3. But since it is made out ofr andn using invariant operations (i.e.,
vectorial products), it is invariant to simultaneous rotations ofr andn, and thus it is invariant to rotations
of r alone aroundn (because in these rotationsn remains fixed). Therefore any tensor that is built from
these unit vectors and the productsr · r, r · n is necessarily an axisymmetric tensor. For example, in order
to represent the second-order correlation functionC��(r), one writes

C��(r)= R1n
�n� + R2e

�
2e

�
2 + R3e

�
1e

�
1 + R4[n�e

�
2 + n�e�

2] +Q1[n�e
�
1 + n�e�

1]
+Q2[e�

2e
�
1 + e

�
2e

�
1] ,

where the six scalar functionsR1, . . . , R4 andQ1,Q2 are functions of� ≡ r · n and� ≡ |r × n|. Note
that this representation takes into account the skew-symmetric part ofC��(r) using the scalar functions
Q1 andQ2.

The major advantage in this representation is that the scalar functions have an immediate interpretation
in terms of measurable quantities. With respect to the example above, if(u, v,w) are the velocity com-
ponents in the direction of(n, e2, e1), respectively, then due to the orthonormality of triplet(n, e2, e1),
we get

R1= 〈u(x)u(x+ r)〉, R2= 〈v(x)v(x+ r)〉 ,
R3= 〈w(x)w(x+ r)〉, R4= 〈u(x)v(x+ r)〉 ,
Q1= 〈u(x)w(x+ r)〉, Q2= 〈v(x)w(x+ r)〉 .

Next, one uses the solenoidal condition to derive linear differential relations between the scalar functions.
One can also consider the triple correlation function and the velocity–pressure correlation function in
the very same method. This way one derives a representation for the dynamical equation ofC��(r).
Mathematically speaking, this representation is no better than Batchelor’s representation, and may even
be considered worse than Chandrasekhar’s. This is because there is no reduction in the number of scalar
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functions, and there is no simplification in the resulting equations. The motivation for this representation
is experimental without compelling physical or mathematical contents.

3.3. Case-specific approaches

The above-mentioned works can be viewed assystematicattempts to deal with the problem of anisotropic
turbulence, where a general method to describe the anisotropic (or, more exactly, axisymmetric) quantities
in turbulence is suggested. In that respect they differ from most research that followed on the subject,
which was usually confined to a particular model or a specific problem related to anisotropy.

3.3.1. Temporal return to isotropy
One such problem is the temporal return to isotropy in which one tries to understand the mechanisms

that drive a decaying turbulence which is initially anisotropic into being statistically isotropic. As in the
works of Batchelor and Chandrasekhar, the statistics was usually assumed to be spatially homogeneous
to simplify the problem. The theoretical attempts to explain this phenomenon can be roughly divided
into two groups. The first group, which was initiated by Rotta[85] in 1951, consists of attempts to
model the decay of anisotropy usingone-pointclosures. In that framework, one usually considers the
dynamical equation of the Reynolds stress, which is thesame-pointcorrelation function of the velocity
field C��(t) ≡ 〈u�(x, t)u�(x, t)〉. In a homogeneous, decaying turbulence, this correlation obeys the
following equation

�tC
�� =−ε̄��� − 2

3 ε̄���

with

ε̄��� ≡ 〈u���p〉 + 〈u���p〉 + 2
[
�〈��u

���u�〉 − 1
3 ε̄���

]
. (21)

Note thatC�� is a second-rankr-independent tensor that contains an isotropic part (which is its trace)
and an anisotropic (traceless) part. This explains the motivation behind the definition of���, which is to
capture the anisotropic part of the decay rate ofC��. To solve Eq. (21), one must model the��� tensor.
Usually this has been done on a phenomenological basis. A systematic treatment to this problem was
offered by in[86]. In that paper, the authors suggested that��� should depend on time implicitly through
C��, ε̄ and�. Additionally, since��� is a dimensionless tensor, it must depend only on dimensionless
parameters. There are six such independent dimensionless quantities. The authors chose to represent them
in a way which isolates the property of anisotropy from other properties, and form the tensor

b�� ≡ C��/q2− 1
3 ���, q2= C�� = 〈u2(x)〉 .

The tensorb�� is proportional to the anisotropic, traceless part ofC�� and hence contains five independent
components. It is often denoted as the “Reynolds stress anisotropy” or simply as the “anisotropy tensor”.
This tensor has become a central measure for anisotropy in turbulence and has been used extensively
in experimental and numerical analysis of anisotropy in turbulence. The sixth component was defined
to be proportional to the isotropic part ofC�� (the energy) byRl ≡ q4/9ε̄�. With these dimensionless
quantities,��� can be written as��� = ���(b, Rl). They further simplified that expression by noticing
that if ��� depends solely onb andRl then it must depend on them in anisotropic manner, since any
anisotropic dependence necessarily means that��� also depends on the boundary conditions. To represent
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this isotropic dependence explicitly, they used the invariant theory[87] and introduced the second- and
third-principal invariants of the traceless tensorb:

II ≡ Tr[b2], III ≡ Tr[b3] .

According to the invariant theory,��� can be most generally written as

��� = �(II , III , Rl)b
�� + �(II , III , Rl)

[
b��b�� − 1

3 II���
]

, (22)

and the problem is reduced to determining the functional form of�(II , III , Rl) and�(II , II , Rl). Based
on this formalism, there have been many attempts to model the functions�(II , III , Rl) and�(II , III , Rl)

to match experimental results[88]. For example, Rotta’s model is considered a linear model for the
anisotropy decay because he used

�(II , III , Rj )= C1 ≈ 3.0, �(II , III , Rj )= 0 .

Consequently, the decay of the anisotropy tensor is given by

�t b
�� =−(ε̄/q2)(C1− 2)b��

which is a linear equation inb��, provided that the isotropic quantitiesε̄, q2 are independent ofb��. This
sort of equation predicts thatb��(t) is proportional tob��(t = 0) and that every component of the tensor
decays at the same rate. Experimentally, however, linearity is not supported. For example, it has been
observed experimentally that the return to isotropy is relatively rapid, at least at the beginning of the
process, when the invariant III is negative, whereas the return to isotropy is fairly slow in the case where
the invariant is positive[89].

The other line of research that was used to study the problem of the return-to-isotropy consists of at-
tempts to model the decay withtwo-point closures. In these models, one considers the different correlation
functions of the velocity field across a separation vectorr, instead of using the same-point correlations as
in the one-point closures. The mathematical structure here is usually much more complicated than that
of the one-point closures, but in return, the two-points models often provide a deeper understanding of
the physics involved.

An important example for such a model is given by Herring[84]. In this work the author used the direct-
interaction approximation (DIA)[90] to study the decay of an axisymmetric turbulence into isotropy. The
DIA is a well-known truncation of the renormalized perturbation theory for turbulence. The perturbation
is done in the interaction strength parameter (which is set to unity in the end), and is truncated at the
second order—i.e., at the direct-interaction terms. The calculations are done in Fourier space. They
result in two coupled equations for the time evolution of the two-time, second-order correlation function
C��(k, t, t ′) ≡ 〈u�(k, t)u�(−k, t ′)〉 and the response functionG��(k, t, t ′). The latter is defined as the
average of the change in the velocity field at timet as a result of an infinitesimal change in the forcing
at timet ′. The equations forC��(k, t, t ′) andG��(k, t, t ′) determine their time evolution. They are non-
linear, non-local integro-differential equations and are therefore very hard to deal with. In the isotropic
case the equations can be considerably simplified by noting that bothC��(k, t, t ′) andG��(k, t, t ′) must
satisfy the solenoidal condition, which in Fourier space means that both tensors must vanish once we
contract any of their indices with the vectork. It is easy to see that under such a condition,C��(k, t, t ′)
andG��(k, t, t ′) can be represented in terms of one scalar function

C��(k, t, t ′)= c(k, t, t ′)D��(k̂), G��(k, t, t ′)= g(k, t, t ′)D��(k̂) , (23)
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where

D��(k̂) ≡ ��� − k̂�k̂� . (24)

When turning to the axisymmetric case, the representation of the tensors become much more complex.
Instead of one scalar function for each tensor, two functions must be used corresponding to the two
scalar functions that where used by Batchelor[81] and Chandrasekhar[82] to describe the second-order
correlation function in real space. One uses the separating vectork and the anisotropy unit-vectorn to
create two unit vectors which are orthogonal tok:

e1(k)
def= k× n/|k× n|, e2(k)

def= k× (k× n)/|k× (k× n)| . (25)

With these vectors,C��(k, t, t ′) was written as

C��(k, t, t ′)= c1(k, t, t
′)e�

1e�
1 + c2(k, t, t

′)e�
2e�

2 , (26)

andG��(k, t, t ′) was written in a similar way using the functionsg1(k, t, t ′) andg2(k, t, t ′). To parame-
terize the angular dependence of the scalar functions, one expands the four scalar functions in terms of
Legendre polynomials,

ci(k, t, t
′)=

∑
j

ci,j (k, t, t
′)Pj (k̂ · n), gi(k, t, t

′)=
∑
j

gi,j (k, t, t
′)Pj (k̂ · n) ,

obtaining an infinite set of coupled equations for the infinite set of functionsci,j (k, t, t
′) andgi,j (k, t, t ′).

These equations were solved numerically after truncating all thej >0 part of the expansion. Doing so,
one finds the time evolution ofci,0(k, t, t ′) andgi,0(k, t, t ′) and connects them to the physical observables
of the one-point closures, such as Rotta’s constant. The conclusions (partially numerical and partially
obtained after a long series of uncontrolled approximations) were that the return-to-isotropy is much
stronger at small scales (largek) and that in some classes of initial conditions, the return-to-isotropy is
indeed a linear phenomenon.

This calculation was soon revised in[91]. In this paper, the authors compared the DIA calculation to the
results of a numerical simulation of a homogeneous and axisymmetric turbulence. This time, however, the
Legendre polynomial expansion in the DIA calculation was extended to include also thej=2 components.
Their conclusion was that the DIA calculation that included thej = 2 parts was in a good agreement
with the numerical simulation, especially thej = 0 parts, provided that the initial anisotropy was small.
Additionally, the authors found that the previous calculation[84], which considered thej = 0 part only,
was quite inadequate to describe the process of return-to-isotropy—even in the case of weak anisotropy.

Other attempts to study the problem of return-to-isotropy in an axisymmetric turbulence used two-
point closures. For example, eddy-damped quasinormal Markovian approximation (EDQNM)[92,93]
have been used in[94]. In this closure scheme, one approximates the fourth-order cumulants of the
velocity field by a linear damping term of the third-order correlation function of the velocity field (the
eddy dumping). Additionally, a “Markov” assumption is used that allows one to integrate the history
integral in the equations and retain an equation for thesame timesecond-order correlation function
C��(k, t). As in the DIA model, this equation is formulated in Fourier space and is both non-linear
and non-local. To parameterize the axisymmetric correlation function in Fourier space, the authors used
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the following representation:

C��(k, t)= 1

4�k2
[D��(k̂)E(k, �, t)+ n�n�D��(k̂)D��(k̂)F (k, �, t)] ,

where here� ≡ k · n andD��(k̂) is defined in Eq. (24). This representation incorporates the solenoidality
condition and is more elegant than (26) in the sense that the isotropic case is very easily recovered once
we setF(k, �, t)= 0 and letE(k, �, t) become�-independent. Plugging this expansion to the dynamical
equation ofC��(k, t), the authors obtained two coupled equations forE(k, �, t) andF(k, �, t)which they
solved numerically for “medium” and “strong” anisotropic initial conditions. Their results indicate that
in the medium anisotropy cases, Rotta’s constant approaches a constant of the order of unity, qualitatively
agreeing with Rotta’s model and with the results[84]. On the other hand, in the strong anisotropy case
this constant does not show any saturation, indicating the failure of Rotta’s model. Additionally, their
results support the idea that the decay isotropy strengthens when the III invariant is negative.

3.4. Dimensional analysis in the presence of strong shear

An important discussion of the effects of strong shear on the energy spectrum was presented in[8].
In this paper, the author included anisotropic corrections in to the K41 framework extending the phe-
nomenological dimensional reasonings leading to (14). He considered the dependence onanisotropic
mean observables, like the large-scale shear proportional to the large-scale mean gradient:S ∝ �〈V 〉:

S(n)(r)= (ε̄r)n/3f (n)

(
r

L0
,
	

r
,S

)
.

By further assuming that anisotropic corrections are “small” andanalytic in the intensity of the shear
S, he proposed the following form for the anisotropic correction to the isotropic two-point longitudinal
structure functions, in the inertial range[8]

S(2)(r) ∼ C(2)(ε̄r)2/3+D(2)(r̂)Sr4/3 , (27)

where the coefficientD(2)(r̂) takes into account the dependence on the directionr̂ in the anisotropic term.
The counterpart of (27) for the spectrum and co-spectrum in Fourier space is

〈k2ui(k)ul(−k)〉 ∼ k−5/3
(

�il − kikl

k2

)
+ Ailk

−7/3 , (28)

where the first term on the RHS is the isotropic K41 scaling and the second term is the anisotropic
contribution withAil being a traceless matrix depending on the details of the large scale shear.

In the past, most of the measurements of the anisotropic contributions toS(2)(r) concentrated on
the Fourier representation (28),[9,11,12,95]. In [9] the authors showed that the prediction (27,28) is
well verified in a wind tunnel flow. Later, many other experiments have confirmed this result in different
experimental situations (see for example the recent results for an homogeneous shear in[7]). Only recently,
a more extensive study of anisotropies has been carried out, considering also higher-order statistical objects
[7,10,33,34]. The situation became immediately less clear: prediction (28) is not the end of the story
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(see below the section on anomalous scaling for anisotropic fluctuations). We show later that in the jargon
of the SO(3) decomposition the anisotropic part of a spherically averaged and solenoidal second-rank
tensor is made fromj = 2 contribution only. For this reason the dimensional analysis is often viewed as
predicting a 4/3 exponent for thej =2 sector of the second-order structure function. This result was later
derived by several authors in terms of Clebsch variables, but again by dimensional reasoning[96–98].
Another, more systematic attempt to derive the scaling behavior of the second-order structure function in
a weakly anisotropic turbulent flow was presented in[99] within a variable scale mean field theory. In that
paper the authors reached the conclusion that all anisotropic contribution to the second-order structure
function must scale∼ r4/3. To reach this result the authors had to simplify the tensorial structure of the
equations for the second-order correlation functions; we argue below that this uncontrolled simplification
biased the estimate of the anisotropic exponents.

4. The modern approach to anisotropy

In the past 10 years, the subject of anomalous scaling in turbulence has gained a great deal of attention,
as it became more and more accepted that in the infiniteRelimit, the scaling exponents of the structure
functions in the inertial range do not conform with the classical prediction of the Kolmogorov theory.
The numerical values of these exponents, as well as the physical mechanism which is responsible for
the anomalous scaling, have been the target of an extensive experimental, numerical, and theoretical
research.

On the theoretical side, important progress was made by studying Kraichnan’s model of passive scalar
advection[100]. This model describes the advection of a passive scalar field by a synthetic, solenoidal
velocity field with a Gaussian, white-in-time statistics. The linearity of the equations for the passive scalar
field and the white-in-time statistics of the velocity field make it possible to write down a closed set of
equations for the same-time correlation functions of the passive scalar[100]. In [101,102], it was shown
that the solution of these equations can lead to anomalous scaling. The key point is that the homogeneous
solutions of these equations are scale invariant with non-trivial anomalous scaling exponents, which are
different from the dimensional scaling exponents that characterize the inhomogeneous, “forced” solutions.
Being usually smaller than the dimensional scaling exponent, the anomalous exponents dominate the
small-scales statistics of the passive scalar field. The homogeneous solutions are commonly referred to as
“zero modes”, and have been calculated to first-order perturbatively in Refs.[101,102]for the fourth-order
structure function and for all even structure functions in Ref.[103]. Exact computer assisted calculations
of the exponents of the third-order structure functions were presented in[104]. Besides suggesting an
elegant mechanism for anomalous scaling, Kraichnan’s model also provided an example in which the
scaling of the anisotropic parts of structure functions is different from the isotropic scaling. In Ref.[105],
it was shown how such a thing can happen, by expanding the second-order structure function of the
passive field in terms of spherical harmonicsYj,m(r̂). It was found that this expansion leads to a set of
decoupledj -dependent equations for the expansion prefactors. These equations can be easily solved by
a power law whose exponent is an increasing function ofj . These exponents are universal in the sense
that they are independent of the forcing and boundary conditions.

The authors in[105]also noticed that the fact that the anisotropic exponents are higher than the isotropic
exponent neatly explains the isotropization of the statistics as smaller and smaller scales are probed.
Based on this example, it was suggested in[106] that a similar mechanism may exist in a Navier–Stokes



64 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164

turbulence. The authors expanded the second-order structure function in terms of spherical harmonics

S(2)(r)=
∑
j,m

S
(2)
jm(r)Yjm(r̂) , (29)

and argued that in the case of weak anisotropy, one can linearize the equations for the anisotropic correc-
tions of the second-order structure function around the isotropic solution. In such a case, the kernel of the
linearized equation is invariant under rotations (isotropic), and as a result the equations for the different
(j,m) components decouple, and arem-independent—much as in the case of the second-order struc-
ture function in Kraichnan’s model. In a scale-invariant situation, this leads to anisotropic,j -dependent
exponents

S
(2)
jm(r) ∼ (ε̄r)2/3

( r
L

)�j ∼ r

(2)j .

If one accepts that homogeneous turbulence enjoys universal statistics in the inertial range, then the
kernel of the above linearized equation is universal, and consequently so are the anisotropic scaling
exponents
(2)j . All of these statements could not have been proved rigorously (and still haven’t been proved
rigorously), yet they offered a new approach to understanding anisotropy in turbulence, an approach that
is explored in the rest of this review.

4.1. Mathematical framework

Experiments in fluid turbulence are usually limited to the measurement of the velocity field at one
single spatial point as a function of time. This situation has begun to improve recently, but still much
of the analysis of the statistical properties of Navier–Stokes turbulence is influenced by this tradition:
the Taylor hypothesis[107] is used to justify the identification of velocity differences at different times
with differences of longitudinal velocity components across a spatial length scaler. Most of the avail-
able statistical information is therefore about properties of longitudinal two-point differences of the
Eulerian velocity field and their moments. Recent research[58] has pointed out the advantages of consid-
ering not only the longitudinal structure functions, but tensorial multi-point correlations of velocity field
differences

w(x, x′, t) ≡ u(x′, t)− u(x, t) ,

given by

F �1...�n(x1, x′1, t1; ; . . . ; xn, x′n, tn)= 〈w�
1(x1, x′1, t1) . . . w�

n(xn, x′n, tn)〉 , (30)

where all the coordinates are distinct. When the coordinates fuse to yield time-independent struc-
ture functions depending on one separation only, these are the so-called tensorial structure functions,
denoted as

S�1...�n(r) ≡ 〈[u�1(x+ r)− u�1(x)] · · · [u�n(x+ r)− u�n(x)]〉 . (31)

Needless to say, the tensorial information is partially lost in the usual measurements conducted at a single
point. One of the main emphases of the present review is that keeping as much of tensorial information



L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164 65

as possible can help significantly in disentangling different scaling contributions to the statistical ob-
jects. Especially when anisotropy implies different tensorial components with possible different scaling
exponents characterizing them, careful control of the various contributions is required.

To understand why irreducible representations of the symmetry group may have an important role in
determining the form of correlation functions, we need to discuss the equations of motion which they
satisfy. We shall show that the isotropy of the Navier–Stokes equation and the incompressibility condition
implies the isotropy of the hierarchical equations which the correlation functions satisfy. We will use this
symmetry to show that every component of the general solution with a definite behavior under rotations
(i.e., components of a definiteirreducible representationof theSO(3) group) has to satisfy these equations
by itself—independently of components with different behavior under rotations. This “foliation” of the
hierarchical equations may possibly lead to different scaling exponents for each component of the general
solution which belong to a differentSO(3) irreducible representation.

4.2. Tensorial correlation functions and SO(3) irreducible representations: general theory

The physical objects that we deal with are the moments of the velocity field at different space–time
locations. In this section we follow Ref.[27] which suggests a way of decomposing these objects into
components with a definite behavior under rotations[27]. It will follow that components with different
behavior under rotation are subject to different dynamical equations, and therefore, possibly, scale dif-
ferently. Essentially, we are about to describe the tensorial generalization of the well-known procedure
of decomposing a scalar function�(r ) into components of different irreducible representations using the
spherical harmonics

�(r )=
∑
j,m

ajm(r)Yjm(r̂ ) . (32)

4.2.1. Formal definition
Consider the correlation functionF(n) of Eq. (30). Thisn-rank tensor is a function of 2n spatial variables

andn temporal variables. It transforms as atensor field: if F(n) is measured in two framesI andI which
are connected by the spatial transformation (say, a rotation)x� = ���x� then, the measured quantities in
each frame will be connected by the relation

F
�1...�n

(x1, x′1, t1; . . . ; xn, x′n, tn)
= ��1�1 · · ·��n�nF �1...�n(x1, x′1, t1; . . . ; xn, x′n, tn)
= ��1�1 · · ·��n�nF �1...�n(�−1x1,�

−1x′1, t1; . . . ;�−1xn,�−1x′n, tn) . (33)

We see that as we move from one frame to another, thefunctional formof the tensor field changes. We
want to classify the different tensor fields according to the change in their functional form as we make
that move. We can omit the time variables from our discussion since under rotation they merely serve as
parameters. We thus defineT({xi}) ≡ F({xi}, {ti=0}). Consider coordinate transformations that are pure
rotations. For such transformations we may simplify the discussion further by separating the dependence
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on the amplitude ofxi from the dependence on the directionality ofxi :

T �1...�n(x1, . . . , xp)= T �1...�n(x1, . . . , xp; x̂1, . . . , x̂p) ,

where here we havep�n, i.e. we consider also the possibility thatn.p spatial locations in (33) coincide.
For pure rotations we may treat the amplitudesx1, . . . , xp as parameters: the transformations properties
of T �1...�n under rotation are determined only by the dependence ofT �1...�n on the unit vectorŝx1, . . . , x̂p.
Accordingly, it seems worthwhile to discuss tensor fields which are functions of the unit vectorsonly.
Notice that in the scalar case we follow the same procedure: by restricting our attention to scalar functions
that depend only on the unit vectorx̂, we construct the spherical harmonics. These functions aredefined
such that each one of them has unique transformation properties under rotations. We then represent
the most general scalar function as a linear combination of the spherical harmonics withx-dependent
coefficients, see Eq. (32).

The classification of the tensor fieldsT �1...�n(x̂1, . . . , x̂p) according to their functional change under
rotations follows immediately from group representation theory[108,109]. But in order to demonstrate
that, we must first make some formal definitions. We defineSn

p to be the space of all smooth tensor fields
of rankn which depend onp unit vectors. This is obviously a linear space of infinite dimension. With
each rotation� ∈ SO(3), we may now associate a linear transformationO� on that space via relation (33)

[O�T ]�1...�n(x̂1, . . . , x̂p) ≡ ��1�1 · · ·��n�nT �1...�n(�−1x̂1, . . . ,�
−1x̂p).

Using this definition, it is easy to see that the set of linear operatorsO� furnishes a representation of the
rotation groupSO(3) since they satisfy the relations:

O�1O�2 = O�1�2, O−1
� = O�−1 .

General group theoretical considerations imply that it is possible to decomposeSn
p into subspaces which

are invariant to the action of all the group operatorsO�. Moreover, we can choose these subspaces
to be irreducible in the sense that they will not contain any invariant subspace themselves (excluding
themselves and the trivial subspace of the zero tensor field). For theSO(3) group each of these subspaces
is conventionally characterized by an integerj=0,1,2, . . .and is of dimension 2j+1[108,109]. It should
be noted that unlike the scalar case, in the general spaceSn

p, there might be more than one subspace for
each given value ofj . We therefore use the indexq to distinguish subspaces with the samej . For each
irreducible subspace(q, j) we can now choose a basis with 2j + 1 components labeled by the indexm:

B
�1,...,�n
q,jm (x̂1, . . . , x̂p); m=−j, . . . ,+j .

In each subspace(q, j), the group operatorsO� furnish a 2j+1-dimensional irreducible representation of
SO(3). Using the basisB�1,...,�n

q,jm (x̂1, . . . , x̂p), we can represent each operatorO� as a(2j +1)× (2j +1)

matrixD(j)

m′m(�) via the relation

[O�B]�1,...,�n
q,jm (x̂1, . . . , x̂p)= ��1�1 · · ·��n�nB

�1...�n
q,jm (�−1x̂1, . . . ,�

−1x̂p)

≡
+j∑

m′=−j
D

(j)

m′m(�)B
�1,...,�n
q,jm′ (x̂1, . . . , x̂p) .



L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164 67

It is conventional to choose the basisBq,jm such that the matricesD(j)

m′m(�), that correspond to rotations

of � radians around the 3 axis, will be diagonal, and given byD
(j)

m′m(�) = �mm′eim�. TheSn
p space

possesses a natural inner-product

〈T,U〉 ≡
∫

dx̂1 . . .dx̂p · T �1...�n(x̂1 . . . x̂p)g�1�1 . . . g�n�nU
�1...�n

(x̂1 . . . x̂p)∗ ,

whereg�� is the three-dimensional Euclidean metric tensor. By definition, the rotation matrices���

preserve this metric, and therefore it is easy to see that for each� ∈ SO(3) we get

〈O�T,O�U〉 = 〈T,U〉

so that,O� are unitary operators. If we now choose the basisBq,jm to be orthonormal with respect to the

inner-product defined above, then the matricesD
(j)

m′m(�) will be unitary.
Finally, considerisotropic tensor fields. An isotropic tensor field is a tensor field which preserves its

functional form under any arbitrary rotation of the coordinate system. In other words, it is a tensor field
that is invariant to the action of all operatorsO�. The one-dimensional subspace spanned by this tensor
field is therefore invariant under all operatorsO� and therefore it must be aj = 0 subspace.

Once the basisBq,jm has been selected, we may expand any arbitrary tensor fieldF �1...�n(x1, . . . , xp)
in this basis. As mentioned above, for each fixed set of amplitudesx1, . . . , xp, we can regard the tensor
field F �1...�n(x1, . . . , xp) as a tensor field which depends only on the unit vectorsx̂1, . . . , x̂p, and hence
belongs toSn

p. We can therefore expand it in terms of the basis tensor fieldsBq,jm with coefficients that
depend onx1, . . . , xp:

F �1...�n(x1, . . . , xp)=
∑
q,j,m

Fq,jm(x1, . . . , xp)B
�1,...,�n
q,jm (x̂1, . . . , x̂p) . (34)

The goal of the following sections is to demonstrate the utility of such expansions for the study of the
scaling properties of the correlation functions. For the important case of tensorial structure functions (31)
the basis function depend on one spatial vector onlyr, and we can expand

S(n)(r)=
∑
q,jm

S
(n)
q,jm(r)B

(n)
q,jm(r̂) . (35)

4.2.2. Construction of the basis tensors
4.2.2.1. The Clebsch–Gordan machinery.A straightforward (although somewhat impractical) way to
construct the basis tensorsBq,jm is to use the well-known Clebsch–Gordan machinery. In this approach
we consider theSn

p space as adirect product spaceof n three-dimensional Euclidean vector spaces with
p infinite-dimensional spaces of single-variable continuous functions on the unit sphere. In other words,
we note thatSn

p is given by

Sn
p = [S1

0]n ⊗ [S0
1]p ,
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and therefore every tensorT �1...�n(x̂1 . . . x̂p) can be represented as a linear combination of tensors of the
form

v
�1
1 . . . v�n

n �1(x̂1) · . . . · �p(x̂p) ,

wherev�i
i are constant Euclidean vectors and�i(x̂i) are continuous functions over the unit sphere.

The three-dimensional Euclidean vector space,S1
0, contains exactly one irreducible representation of

SO(3)—the j = 1 representation—whileS0
1, the space of continuous functions over the unit sphere,

contains every irreducible representation exactly once. The statement thatSn
p is a direct product space

may now be written in a group representation notation as

Sn
p =

n︷ ︸︸ ︷
1⊗ 1⊗ . . .⊗ 1⊗

p︷ ︸︸ ︷
(0⊕ 1⊕ 2 . . .)⊗ . . . (0⊕ 1⊕ 2 . . .) .

We can now choose an appropriate basis for each space in the product:

• For the three-dimensional Euclidean space we may choose

e1= 1√
2
(1, i,0), e0= (0,0,1), e−1= 1√

2
(−1,−i,0) .

• For the space of continuous functions over the unit sphere we may choose the well-known spherical
harmonic functions.

Once these bases have been chosen, we can construct a direct-product basis forSn
p:

E
�1...�n
i1...in(l1�1)...(lp�p)

(x̂1, . . . , x̂p) ≡ e
�1
i1
· . . . · e�n

in
· Yl1,�1(x̂1) · . . . · Ylp,�p(x̂p) .

The unitary matrix that connects theEi1...in(l1�1)...(lp�p) basis to theBq,jm basis can be calculated using the
appropriate Clebsch–Gordan coefficients. The calculation is straightforward but very long and tedious.
However, the above analysis enables us to count and classify the different irreducible representations of
a givenj . By using the standard rules of angular-momentum addition

s ⊗ l = |s − l| ⊕ · · · ⊕ (s + l) ,

we can count the number of irreducible representations of a givenj . For example, consider the space
S2

1 of second-rank tensors with one variable over the unit sphere. Using the angular-momentum addition
rules we see

S2
1= 1⊗ 1⊗ (0⊕ 1⊕ 2⊕ 3⊕ . . .)

= (0⊕ 1⊕ 2)⊗ (0⊕ 1⊕ 2⊕ 3⊕ . . .)

= (3× 0)⊕ (7× 1)⊕ (9× 2)⊕ (9× 3)⊕ . . . . (36)

We see that there are exactly threej=0 representations, sevenj=1 representations and 9 representations
for eachj >1. It can be further argued that the symmetry properties of the basis tensors with respect
to their indices come from the 1⊗ 1= 0⊕ 1⊕ 2 part of the direct product (36). Therefore, out of the
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9 irreducible representation ofj >1, 5 will be symmetric and traceless, 3 will be anti-symmetric and
1 will be trace-full and diagonal. Similarly, the parity of the resulting tensors (with respect to the single
variable) can be calculated.

Once we know how many irreducible representations of eachj are found inSn
p, we can construct

them “by hand”, in some other, more practical method, which will be demonstrated in the following
subsection.

4.2.2.2. Alternative derivation of the basis functions.The method found most useful in application
is based on the simple idea that contractions withr�, ���, ε��� and differentiation with respect tor�

are all isotropicoperations[27], isotropic in the sense that the resulting expression will have thesame
transformation properties under rotation as the expression we started with. The proof of the last statement
follows directly from the transformation properties ofr�, ���, ε���.

The construction of allBq,jm that belong toSn
1 now becomes a rather trivial task. We begin by defining

a scalar tensor field with a definitej,m. An obvious choice would be the well-known spherical harmonics
Yjm(r̂ ), but a better one is

�jm(r ) ≡ rjYjm(r̂ ) .

The reason that we prefer�jm(r ) toYjm(r̂ ), is that�jm(r ) is polynomial inr (whileYjm(r̂ ) is polynomial
in r̂ ) and therefore it is easier to differentiate it with respect tor . Once we have defined�jm(r ), we can
construct theBq,jm by “adding indices” to�jm(r ) using the isotropic operations mentioned above. For
example, we may now construct

• r−j����jm(r ),
• r−j+2��������jm(r ),
• r−j−1r��jm(r ), etc.

Note that we should always multiply the resulting expression with an appropriate power ofr, in order to
make itr-independent, and thus a function ofr̂ only.

The crucial role of the Clebsch–Gordan analysis is to tell us how many representations from each type we
should come up with. First, it tells us the highest power ofr̂ in each representation, and then it can also give
us the symmetry properties ofBq,jm with respect to their indices. For example, consider the irreducible
representations ofS2

1—second rank tensors which depend on one unit vectorr̂ . The Clebsch–Gordan
analysis shows us that this space contains the following irreducible representations spelled out in (36).
That is, for eachj >1 we are going to have 9 irreducible representations. The indices symmetry of the
tensor comes from theS1

0⊗S1
0= 1⊗ 1= 0⊕ 1⊕ 2 part of the direct product. This is a direct product

of two Euclidean spaces, so its a second rank constant tensor. We can mark the representation number in
this space with the letters, and the representation number of theS0

1=0⊕1⊕2⊕3⊕ . . . space with the
letter l. This way each representation inS2

1 of a givenj will have two additional numbers(s, l), which
actually serve as the indexq that distinguishes irreducible representations of the samej . Thes index will
determine the indices symmetry of the tensor, while thel index will determine the highest power ofr̂ in
the tensor. If we now recall that in the space of constant second-rank tensors,S1

0⊗S1
0= 0⊕ 1⊕ 2, the

s = 0,2 representations are symmetric while thes = 1 representation is anti-symmetric, we can easily
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construct theB��
q,jm:

(s, l)= (0, j), B
��
1,jm(r̂ ) ≡ r−j����jm(r ) ,

(s, l)= (1, j − 1), B
��
2,jm(r̂ ) ≡ r−j+1ε������jm(r ) ,

(s, l)= (1, j), B
��
3,jm(r̂ ) ≡ r−j [r��� − r���]�jm(r ) ,

(s, l)= (1, j + 1), B
��
4,jm(r̂ ) ≡ r−j−1ε���r��jm(r ) ,

(s, l)= (2, j − 2), B
��
5,jm(r̂ ) ≡ r−j+2�����jm(r ) ,

(s, l)= (2, j − 1), B
��
6,jm(r̂ ) ≡ r−j+1[ε���r����

� + ε���r����
�]�jm(r ) ,

(s, l)= (2, j), B
��
7,jm(r̂ ) ≡ r−j [r��� + r���]�jm(r ) ,

(s, l)= (2, j + 1), B
��
8,jm(r̂ ) ≡ r−j−1[r�ε���r��� + r�ε���r���]�jm(r ) ,

(s, l)= (2, j + 2), B
��
9,jm(r̂ ) ≡ r−j−2r�r��jm(r ) . (37)

It should be stressed that theseB��
q,jm are not exactly the same one we would have gotten from the

Clebsch–Gordan machinery. For example, they are not orthogonal among themselves for the same values
of j,m (although, they are orthogonal for different values ofj or m). Nevertheless, they are linearly
independent and thus span a given(j,m) sector in theS2

1 space. The set of eigenfunctions,B
��
q,jm, can

be further classified in terms of its properties under permutation of tensorial indices,�� and in terms of
their parity properties, i.e. how do they transform under ther →−r operation. Taking in to account both
properties we may distinguish:

SubsetI: Symmetric in�, � and with parity(−1)j :

B
��
9,jm(r̂), B

��
7,jm(r̂), B

��
1,jm(r̂), B

��
5,jm(r̂) ,

SubsetII: Symmetric to�, � exchange and with parity(−1)j+1:

B
��
8,jm(r̂), B

��
6,jm(r̂) .

SubsetIII: Antisymmetric to�, � exchange and with parity(−1)j+1:

B
��
4,jm(r̂), B

��
2,jm(r̂) .

SubsetIV: Antisymmetric to�, � exchange and with parity(−1)j :

B
��
3,jm(r̂) .

The reader may find more details on the algebra ofSO(3) decomposition of second-order tensor in
Appendix A.

4.3. The isotropy of the hierarchy of equations and its consequences

In this section we follow Ref.[27] in deriving equations of motion for the statistical averages of
the velocity and pressure fields differences. We start from the Navier–Stokes equations and show that
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their isotropy implies the isotropy of the equations for the statistical objects. Finally, we demonstrate
the foliation of these equations to different sectors ofj,m. Consider the Navier–Stokes equations (2)
in a bounded domain�. In principle, these equations can be the basis for deriving the infinite linear
hierarchy of equations for the Eulerian correlation functions and for studying its properties under rotation.
Unfortunately, the relevant dynamical time scales are revealed only when the effect of sweeping is
removed. Therefore, we choose to work here with the transformation proposed in[110] in which the flow
is observed from the point of view of one specific fluid particle which is located atx0 at time t0. Let
�(x0, t0|t) be the particle’s translation at timet :

�(x0, t0|t)=
∫ t

t0

dsu[x0+ �(x0, t0|s), s] .

We then redefine the velocity and pressure fields to be those seen from an inertial frame whose origin sits
at the current particle’s position:

v(x0, t0|x, t) ≡ u[x + �(x0, t0|t), t] ,

�(x0, t0|x, t) ≡ p[x + �(x0, t0|t), t] .

Next, we define the differences of these fields:

W�(x0, t0|x, x′, t) ≡ v�(x0, t0|x, t)− v�(x0, t0|x′, t) ,

�(r0, t0|x, x′, t) ≡ �(x0, t0|x, t)− �(x0, t0|x′, t) .

A straightforward calculation shows that the dynamical equations forW are:

�tW
�(x, x′, t)
=−(�� + �′�)�(x0, t0|x, x′, t)+ �(�2+ �′2)W�(x0, t0|x, x′, t)
− ��W

�(x0, t0|x, x0, t)W
�(x0, t0|x, x′, t)− �′�W�(x0, t0|x′, x0, t)W

�(x0, t0|x, x′, t) ,

��W
�(x0, t0|x, x′, t)= �′�W�(x0, t0|x, x′, t)= 0 . (38)

By inspection,t0 merely serves as a parameter, and therefore we will not denote it explicitly in the
following discussion. Also, in order to make the equations easier to understand, let us introduce some
shorthand notation for the variables(xk, x′k, tk):

Xk ≡ (xk, x′k, tk), Xk ≡ (xk, x
′
k, tk), X̂k ≡ (x̂k, x̂′k) .

Using (38), we can now derive the dynamical equations for the statistical moments ofW,�: Let 〈·〉 denote
a suitable ensemble averaging. We define two types of statistical moments:

F�1...�n(x0|X1, . . . ,Xn) ≡ 〈W�1(x0|X1) . . .W
�n(x0|Xn)〉 ,

H�2...�n(x0|X1, . . . ,Xn) ≡ 〈�(x0|X1)W
�2(x0|X2) . . .W

�n(x0|Xn)〉 .

Eq. (38) implies

�t1F
�1...�n(x0|X1, . . . ,Xn)

=−(��1
(x1)

+ ��1
(x′1)

)H�2...�n(x0|X1, . . . ,Xn)− �(x1)
� F��1...�n(x0|X̃,X1, . . . ,Xn)

− �
(x′1)
� F��1...�n(x0|X̃ ′,X1, . . . ,Xn)+ �(�2

(x1)
+ �2

(x′1)
)F�1...�n(x0|X1, . . . ,Xn) (39)
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with X̃ ≡ (x0, x′, t); X̃ ′ ≡ (x, x0, t), with the further constraint:

�(x1)
�1

F�1...�n(x0|X1, . . . ,Xn)= 0, �
(x′1)
�1 F�1...�n(x0|X1, . . . ,Xn)= 0 .

Eqs. (39), are linear and homogeneous. Therefore their solutions form a linear space. The most general
solution to these equations is given by a linear combination of a suitable basis of the solutions space. To
construct a specific solution, we must use the boundary conditions in order to set the linear weights of the
basis solutions. We shall now show that the isotropy of these equations implies that our basis of solutions
can be constructed such that every solution will have a definite behavior under rotations (that is, definite
j andm). But before we do that, note that in many aspects the situation described here is similar to the
well-known problem of Laplace equation in a closed domain�:

∇2�= 0, �|�� = � .

The Laplace equation is linear, homogeneous and isotropic. Therefore its solutions form a linear space.
One possible basis for this space is

�jm(r ) ≡ rjYjm(r̂ ) ,

in which the solutions have a definite behavior under rotations (belong to an irreducible representation
of SO(3)). The general solution of the problem is given as a linear combination of the�jm(r ), cf.
Eq. (32). For a specific problem, we use the value of�(r ) on the boundary (i.e., we use�(r )) in order to
set the values ofal,m.

To see that the same thing happens with the hierarchy (39), we consider an arbitrary solution{F(n),

H(n)| n = 2,3, . . .} of these equations. We may write the tensor fieldsF(n),H(n) in terms of a basis
Bq,jm:

F�1...�n(x0|X1, . . . ,Xn) ≡
∑
q,j,m

F
(n)
q,jm(x0, X1, . . . , Xn)B

(n)
q,jm(x̂0, X̂1, . . . X̂n) , (40)

H�2...�n(x0|X1, . . . ,Xn) ≡
∑
q,j,m

H
(n)
q,jm(x0, X1, . . . , Xn)B

(n−1)
q,jm (r̂0, X̂1, . . . X̂n) , (41)

where here and below we use the shorthand notation,B(n)
q,jm to denote theSO(3) basis ofnth-order tensors,

B
�1,...,�n
q,jm . Now all we have to show is that the pieces ofF(n),H(n) with definitej,m solve the hierarchy

equationsby themselves—independently of pieces with differentj,m. The proof of the last statement is
straightforward though somewhat tedious. We therefore only sketch it in general lines. The isotropy of the
hierarchy equations implies that pieces ofF(n),H(n) with definitej,m, maintain their transformations
properties under rotationafter the linear and isotropic operations of the equation have been performed.
For example, ifF�1...�n(x0|X1, . . . ,Xn) belongs to the irreducible representation(j,m), then so will
the tensor fields:�(xk)�i F�1...�n, �(xk)�i �(xk)�i F�1...�n , although, they may belong to differentSn

p spaces (i.e.,

have one less or one more index). Therefore, if we choose the bases{B(n)
q,jm} to be orthonormal, plug

expansion (40) into the hierarchy equations (39), and take the inner product withB(n)
q,jm, we will obtain
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new equations for the scalar functionsF
(n)
q,jm,H

(n)
q,jm:

�t1F
(n)
q,jm(r0, X1, . . . , Xn)

=−
∑
q ′
〈(��1

(x1)
+ ��1

(x′1)
)H

(n)

q ′jm(r0, X1, . . . , Xn)B
(n−1)
q ′jm ,B(n)

q,jm〉

−
∑
q ′
〈�(x1)

� F
(n+1)
q ′jm (r0, X̃, X1, . . . , Xn)B

(n+1)
q ′jm ,B(n)

q,jm〉

−
∑
q ′
〈�(x′1)� F

(n+1)
q ′jm (r0, X̃

′, X1, . . . , Xn)B
(n+1)
q ′jm ,B(n)

q,jm〉

+ �
∑
q ′
〈(�2

(x1)
+ �2

(x′1)
)F

(n)

q ′jm(r0, X1, . . . , Xn)B
(n)

q ′jm,B
(n)
q,jm〉 , (42)

∑
q ′
〈�(x1)

�1
F

(n)

q ′jm(x0, X1, . . . , Xn)B
(n)

q ′jm,B
(n−1)
q,jm 〉 = 0 ,

∑
q ′
〈�(x′1)�1 F

(n)

q ′jm(r0, X1, . . . , Xn)B
(n)

q ′jm,B
(n−1)
q,jm 〉 = 0 . (43)

Note that in the above equations,〈·〉 denote the inner-product in theSn
p spaces. Also, the sums over

q ′, j ′,m′ from (40) was reduced to a sum overq ′ only—due to the isotropy. We thus see explicitly from
(42,43) the decoupling of the equations for differentj,m.

At this point we remind the reader that in the case of the most used statistical objects in the analysis of
experimental and numerical data are the longitudinalnth-order structure functions:

S(n)(r)= 〈(�u�(r))n〉 .

For these objects the basis functions are simply the spherical harmonics and theSO(3) decomposition
reads:

S(n)(r)=
∑
j,m

S
(n)
jm(r)Yjm(r̂) . (44)

A question of major interest for all that follows are the numerical values of the scaling exponents which
are defined by the power laws

S
(n)
jm(r) ∝ r


(n)j .

4.4. Dimensional analysis of anisotropic fluctuations

The actual calculation of scaling exponents in the anisotropic sectors is difficult, and will be considered
in the rest of this review. It is worthwhile to have a phenomenological guess based on dimensional analysis.
Unfortunately, once anisotropies are considered, dimensional considerations become tricky. Historically,
the first successful attempt to introduce dimensional considerations in anisotropic turbulence was the
approach discussed in Section 3.4. There the key role was played by the large-scale mean shear. However
this work is limited to the analysis of second-order correlations, without discriminating among different
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j sectors. In light of theSO(3) decomposition it should be considered as a prediction for
(2)2 . Another
dimensional argument was presented in[18] extending the considerations of Section 3.4. This argument
takes into account also the particular angular structure entering in the interaction between small-scale
fluctuations and large-scale shear. By decomposing the velocity field,u, in a small-scale component,v,
and a large-scale anisotropic component,U, one finds the following equation for the time evolution ofv:

�t v� + v���v� + U���v� + v���U� =−��p + ��v� .

The major effect of the large-scale field is given by the instantaneous shear��U� which acts as an
anisotropic forcing term on small scales. We can write the balance equation for two-point quantities
〈v�(x′)v�(x)〉 in the stationary regime:

〈v�(x
′)v�(x)��v�(x)〉 ∼ 〈��U�v�(x

′)v�(x)〉 .

The shear term is a large-scale “slow” quantity and therefore, as far as scaling properties are concerned,
can be safely estimated as:〈��U�v�(x′)v�(x)〉 ∼ D��〈v�(x′)v�(x)〉. The tensorD�� is associated to the
joint probability to have a given shear and a given small-scale velocity configuration. TheD�� being a
constant tensor can possess at most angular momentum up toj = 2. Similarly for three-point quantities
we may write:〈vvv�v〉 ∼ 〈�Uvvv〉, which can be easily generalized to velocity correlation of any order.
One may therefore argue, by using simple composition of angular momenta, (j=2⊕j−2), the following
dimensional matching for structure functions in different anisotropic sectors:

S
(n)
jm(r) ∼ r|D| · S(n−1)

j−2,m(r) , (45)

whereS(n)j,m(r) is a shorthand notation for the projection on thejth sector of thenth-order correlation

function introduced in the previous section,F
(n)
qjm(r). In (45) with |D| we denote the typical intensity of

the shear termD�� in thej=2 sector. From Eq. (45) one can obtain higherj exponents of the higher-order
structure functions from the lower-order structure functions of lower anisotropic sectors which appear on
the RHS. For example, the dimensional prediction for the third-order scaling exponent in thej=2 sector,


(3)2 can be obtained by the matching:S
(3)
2,m(r) ∼ r|D|S(2)0,m(r) ∼ r
(3)2 . By using the same argument and

the known scaling of the third-order correlation forj = 0,2, the scaling exponents of the fourth-order
correlation forj = 2,4 can be estimated. The following expression is readily obtained for any order:


(n)j = (n+ j)

3
(dimensional prediction) . (46)

This formula coincides with prediction (27) forn=2 andj=2. We will see below that both measurements
and closure calculations exhibit exponents which are anomalous, i.e. different from these dimensional
predictions.

5. Exactly solvable models

In this section we review the work done on anomalous scaling in the anisotropic sectors of exactly
solvable models. The first of these models is the Kraichnan model of passive scalar advection in which
the velocity field is rapidly varying in time[28,100,111]. This model offers detailed understanding of the
anomalous scaling in all the anisotropic sectors both from the Lagrangian and the Eulerian points of view.
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The scaling exponents can be calculated however only in perturbation theory. The second model that we
consider is of passive advection of a magnetic field[112]. In this case one can compute non-perturbatively
the scaling exponents of the second-order correlation function in all the sectors of the symmetry group.
These two models show that the spectrum of scaling exponents is discrete and strictly increasing as a
function of j. If this is true for systems with pressure, like the Navier–Stokes equation, it may lead to
problems of convergence of the integrals induced by the existence of the pressure terms. To this aim we
review below a third exactly solvable model in which pressure is used explicitly to keep an advected
vector solenoidal. It was shown that also here the spectrum is discrete and strictly increasing, and it
was explained how the putative divergences are avoided. The mechanism discovered here is most likely
also operating in the Navier–Stokes case. The last model reviewed in this section is the second-order
structure function in the Navier–Stokes problem, linearized for small anisotropies. Also in this case we
find a discrete spectrum of strictly increasing scaling exponents as a function ofj. Most of the results
here presented can also be reproduced within the Renormalization Group approach. We do not enter
here in this subject which would deserve a whole review by itself. The interested reader can find the
most important results for passive scalar advection in[113,114], for magnetic fields in[115,116]and for
passive vectors in[117].

5.1. Anomalous scaling in the anisotropic sectors of the Kraichnan model of passive scalar advection

Kraichnan’s model of passive scalar advection in which the driving (Gaussian) velocity field has fast
temporal decorrelation turned out to be a very important case model for understanding the anomalous scal-
ing behavior in turbulent advection, including the anisotropic sectors of turbulent scalar fields. We review
here the derivation that shows that the solutions of the Kraichnan equation for thenth-order correlation
functions foliate into sectors that are classified by the irreducible representations of theSO(d) symmetry
group. A discrete spectrum of universal anomalous exponents is found, with a different exponent charac-
terizing the scaling behavior in every sector. Generically, the correlation functions and structure functions
appear as sums over all these contributions, with non-universal amplitudes which are determined by the
anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent,
and therefore for sufficiently small-scales local isotropy is always restored. We start by presenting the
Eulerian calculation which results in actual values of the scaling exponents (in perturbation theory)[29].
The Eulerian calculation of the anomalous exponents is done in two complementary ways. In the first
they are obtained from the analysis of the correlation functions ofgradient fields. The theory of these
functions involves the control of logarithmic divergences which translate into anomalous scaling with the
ratio of the innerand the outer scales appearing in the final result. In the second way one computes the
exponents from the zero modes of the Kraichnan equation for the correlation functions of the scalar field
itself. In this case the renormalization scale is the outer scale. The two approaches lead to the same scaling
exponents for the same statistical objects, illuminating the relative role of the outer and inner scales as
renormalization scales. To clarify this further, Ref.[29] presented an exact derivation of fusion rules
which govern the small-scale asymptotics of the correlation functions in all the sectors of the symmetry
group and in all dimensions. The purpose of the Eulerian calculation is twofold. On the one hand, we are
interested in the effects of anisotropy on the universal aspects of scaling behavior in turbulent systems. On
the other hand, we are interested in clarifying the relationship between ultraviolet and infrared anomalies
in turbulent systems. The two issues discussed in this subsection have an importance that transcends
the particular example that we treat here in detail. Having below a theory of anomalous scaling in all
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the various sectors of the symmetry group allows us to explain clearly the relationship between the two
renormalization scales and the anomalous exponents that are implied by their existence. Since we expect
that Kolmogorov-type theories, which assume that no renormalization scale appears in the theory, are
generally invalidated by the appearance of both the outer and the inner scales as renormalization scales,
the clarification of the relation between the two is important also for other cases of turbulent statistics.

The central quantitative result of the Eulerian calculation is the expression for the scaling exponent�(n)j

which is associated with the scaling behavior of thenth-order correlation function (or structure function)
of the scalar field in thejth sector of the symmetry group. In other words, this is the scaling exponent
of the projection of the correlation function on thejth irreducible representation of theSO(d) symmetry
group, withn andj taking on even values only,n= 0,2, . . . andj = 0,2, . . . :

�(n)j = n− ε

[
n(n+ d)

2(d + 2)
− (d + 1)j (j + d − 2)

2(d + 2)(d − 1)

]
+O(ε2) . (47)

The result is valid for any evenj�n, and toO(ε) whereε is the scaling exponent of the eddy diffusivity
in the Kraichnan model (and see below for details). In the isotropic sector (j = 0) we recover the result
of [103]. Significantly, for�(2)j we have a non-perturbative result that was derived in[105], namely

�(2)j = 1

2

(
2− d − ε+

√
(2− d − ε)2+ 4(d + ε− 1)j (d + j − 2)

d − 1

)
, j�2

valid for all values ofε in the interval(0,2) and for allj�2. This exact result agrees with (47) after
expanding toO(ε) for n= 2 andj = 2.

It is noteworthy that for higher values ofj and for every ordern the discrete spectrum is a strictly
increasing function ofj. This is important, since it shows that for diminishing scales the higher-order
scaling exponents become irrelevant, and for sufficiently small scales only the isotropic contribution
survives. As the scaling exponent appear in power laws of the type(r/�)�, with � being some typical
outer scale andr>�, the larger is the exponent, the faster is the decay of the contribution as the scaler
diminishes. This is precisely how the isotropization of the small scales takes place, and the higher-order
exponents describe the rate of isotropization. Nevertheless for intermediate scales or for finite values of
the Reynolds and Peclet numbers, the lower-lying scaling exponents will appear in measured quantities,
and understanding their role and disentangling the various contributions cannot be avoided.

5.1.1. Kraichnan’s model of turbulent advection and the statistical objects
The model of passive scalar advection with rapidly decorrelating velocity field was introduced in[100].

In recent years[101–103,105,111,118,119]it was shown to be a fruitful case model for understanding
multi-scaling in the statistical description of turbulent fields. The basic dynamical equation in this model
is for a scalar fieldT (r, t) advected by a random velocity fieldu(x, t):

[�t − �0∇2+ u(x, t) · ∇]T (x, t)= f (x, t) . (48)

In this equationf (x, t) is the forcing. In Kraichnan’s model the advecting fieldu(x, t) as well as the
forcing fieldf (x, t) are taken to be Gaussian, time and space homogeneous, and delta-correlated in time:

f (x, t)f (x′, t ′)= �(x− x′)�(t − t ′), 〈u�(x, t)u�(x′, t ′)〉 =W��(x− x′)�(t − t ′).
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Here the symbols· · · and〈· · ·〉 stand for independent ensemble averages with respect to the statistics
of f andu which are given a priori. We will study this model in the limit of large Peclet (Pe) number,
Pe ≡ U��/�0, whereU� is the typical size of the velocity fluctuations on the outer scale� of the velocity
field. We stress that the forcing isnot assumed isotropic, and actually the main goal of this section is to
study the statistic of the scalar field under anisotropic forcing.

The correlation function of the advecting velocity needs further discussion. It is customary to introduce
W��(r) via its k-representation:

W��(r)= εD

�d

∫ �−1

�−1

ddp

pd+ε
P ��(p)exp(−ip · r), P ��(p)=

[
��� − p�p�

p2

]
, (49)

whereP ��(p) is the transversal projector,�d = (d − 1)�(d)/d and�(d) is the volume of the sphere ind
dimensions. Eq. (49) introduces the four important parameters that determine the statistics of the driving
velocity field:� and� are the outer and inner scales of the driving velocity field, respectively. The scaling
exponentε characterizes the correlation functions of the velocity field, lying in the interval[0,2]. The
factorD is related to the correlation function as follows:

W��(0)=D���(�
ε − �ε) . (50)

The most important property of the driving velocity field from the point of view of the scaling properties
of the passive scalar is the “eddy diffusivity” tensor[100]

K��(r) ≡ 2[W��(0)−W��(r)] . (51)

The scaling properties of the scalar depend sensitively on the scaling exponentε that characterizes ther
dependence ofK��(r) ∝ [�ε − �ε]���, for r?�, namely

K��(r) ∝ rε

[
��� − ε

d − 1+ ε

r�r�

r2

]
, �>r>� . (52)

5.1.2. The statistical objects
In the statistical theory we are interested in the power laws characterizing ther dependence of the

various correlation and response functions ofT (x, t) and its gradients. We will focus on three types of
quantities:

(1) “Unfused” structure functions ofT (x, t) are defined as

F
(n)
T (x1, x′1, . . . , xn, x′n) ≡ 〈[T (x1, t)− T (x′1, t)]

× [T (x2, t)− T (x′2, t)] . . . [T (xn, t)− T (x′n, t)]〉 , (53)

and in particular the standard “fused” structure functions are

S
(n)
T (r) ≡ 〈[T (x+ r, t)− T (x, t)]n〉 .

In writing this equation, we used the fact that the stationary and space-homogeneous statistics of the
velocity and the forcing fields lead to a stationary and space homogeneous ensemble of the scalarT.
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If the statistics is also isotropic, thenS(n)T (r) becomes a function ofr only, independent of the direction

of r. The “isotropic scaling exponents”�(n)0 of the structure functions

S
(n)
T (r) ∝ r�(n)0 ,

characterize theirr dependence in the limit of largePe, whenr is in the “inertial” interval of scales.
This range is�, 	>r>�, L where	= �(�0/D)1/ε is the dissipative scale of the scalar field. When the

ensemble is not isotropic we define exponents (47) by expandingS
(n)
T (r) according to

S
(n)
T (r)=

∑
jm

S
(n)
T ,jm(r)Yjm(r̂), S

(n)
T ,jm(r) ∝ r

�(n)j .

(2) In addition to structure functions we are also interested in the simultaneousnth-order correlation
functions of the temperature field which is time independent in stationary statistics:

T(n)({xl}) ≡ 〈T (x1, t) T (x2, t) . . . T (xn, t)〉 , (54)

where we used the shorthand notation{xl} for the whole set of arguments ofnth-order correlation function
T(n), x1, x2 . . . xn.

(3) Finally, we are interested in correlation functions of the gradient field∇T . There can be a number
of these, and we denote

H�1...�n({xl}) ≡
〈

n∏
i=1

[∇�i T (xi , t)]
〉

.

The tensorH�1...�n can be contracted in various ways. For example, binary contractions�1= �2, �3= �4,
etc. withx1= x2, x3= x4, etc. produces the correlation functions of dissipation field|∇T |2. Of particular
interest is the coordinate-independent tensorH(n) obtained by taking allxi = x:

H �1...�n =H�1...�n({xi = x}) . (55)

When the ensemble is not isotropic we need to take into account the angular dependence ofx, and the
scaling behavior consists of multiple contributions arising from anisotropic effects.

5.1.3. The Eulerian calculation
The correlation functions of the gradient fieldH(n) of Eq. (55) are tensors independent of the coordinates.

Nevertheless their calculation is somewhat heavy, and we do not reproduce it here; we refer the reader to
[29] where the calculation is presented in full detail. The final result of the calculation is for the projection
of H(n) onto thej sector of theSO(3) symmetry group reads

H(n)
j ∝

(
�

	

)n−�(n)j

, (56)

where the proportionality constant is a tensor in the limit	>�. The exponents�(n)j are the same as
those found below for the correlation function in which all the scales are within the inertial range. The
appearance of both renormalization lengths and the identity of the exponents in inertial and gradient
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objects is a consequence of the fusion rules that were explored in[29] with some care. The correlation
functionsT(n) satisfy the Kraichnan’s equation[100]−�0

n∑
i=1

∇2
i +

1

2

n∑
i,k=1

K��(xi − xk)∇�
i ∇�

k

T(n)({xl})

= 1

2

n∑
{i �=k}=1

�(xi − xk)T
(n−2)({xl}l �=i,k) , (57)

where{xl}l �=i,k is the set off allxl with l from 1 ton, except ofl = i andl = j . SubstitutingK��(x) from
Eqs. (50), (51) one gets−�

n∑
i=1

∇2
i +

n∑
{i �=k}=1

W��(xi − xk)∇�
i ∇�

k

T(n)({xl})

= 1

2

n∑
{i �=k}=1

�(xi − xk)T
(n−2)({xl}l �=i,k) , (58)

where�= �0+D[�ε − �ε]. Here we used that in space homogeneous case
∑n

i=1 ∇i = 0 and therefore∣∣∣∣∣
n∑

i=1

∇i

∣∣∣∣∣
2

=
n∑

i=1

∇2
i +

n∑
{i �=k}=1

∇�
i ∇�

k = 0 .

In this section we consider the zero modes of Eq. (57). In other words, we seek solutionsZ(n)({xl}) which
in the inertial interval solve the homogeneous equation

n∑
i �=k=1

K��(xi − xk)∇�
i ∇�

k Z
(n)({xl})= 0 . (59)

We allow anisotropy on the large scales. Since all the operators here are isotropic and the equation is
linear, the solution space foliates into sectorsj,m corresponding the irreducible representations of the
SO(d) symmetry group. Accordingly, we write the desired solution in the form

Z(n)({rl})=
∑
j,m

Z
(n)
jm({rl|}) ,

whereZ(n)
jm are functions composed of irreducible representations ofSO(d) with definitej,m. Each of

these components is now expanded inε. In other words the notation of Ref.[103],

Z
(n)
jm = E

(n)
jm + εG

(n)
jm +O(ε2) .

For ε= 0 Eq. (59) simplifies to

n∑
i=1

∇2
i E

(n)
jm({rl})= 0 , (60)
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for any value ofj,m. Next, we expand the operator in Eq. (59) inε and collect the terms ofO(ε):

n∑
i=1

∇2
i G

(n)
jm({rl})= VnE

(n)
jm({rl}) , (61)

whereεVn is the first-order term in the expansion of the operator in (59):

Vn ≡
n∑

i �=k=1

[
��� log(rik)− r�

ikr
�
ik

(d − 1)r2
ik

]
∇�
i ∇�

k , (62)

whererik ≡ xi − xk.
In solving Eq. (60) we are led by the following considerations: we want scale-invariant solutions, which

are powers ofrik. We want analytic solutions, and thus we are limited to polynomials. Finally, we want
solutions that involve all then coordinates for the functionE(n)

jm; solutions with fewer coordinates do not
contribute to the structure functions (53). To see this note that the structure function is a linear combination
of correlation functions. This linear combination can be represented in terms of the difference operator
�l(x, x′) defined by

�l(x, x′)T(n)({xk}) ≡T(n)({xk})|xl=x −T(n)({xk})|xl=x′ . (63)

Then,

S
(n)
T (x1, x′1 . . . xn, x′n)=

∏
l

�l(xl , x′l)T(n)({xk}) . (64)

Accordingly, if T(n)({xk}) does not depend onxi , then�i(ri , r′i)T(n)({rk}) = 0 identically. Since the
difference operators commute, we can have no contribution to the structure functions from parts ofT(n)

that depend on fewer thann coordinates. Finally, we want the minimal polynomial because higher order
ones are negligible in the limitrik>�. Accordingly,E(n)

jm with j�n is a polynomial of ordern. Following

the procedure outlined in Appendix B we can write the most general form ofE
(n)
jm, up to an arbitrary

factor, as

E
(n)
jm = x

�1
1 . . . x�n

n B
�1...�n
n,jm + [. . .] , (65)

where[. . .] stands for all the terms that contain fewer thann coordinates; these do not appear in the
structure functions but maintain the translational invariance of our quantities. Note that in this case we
carry the indexn in the tensor basis functions since the theory mixes basis functions of different orders.
The appearance of the tensorB

�1...�n
n,jm is justified by the fact thatE(n)

jm must be symmetric to permutations
of any pair of coordinates on the one hand, and it has to belong to thejm sector on the other hand. This
requires the appearance of the fully symmetric tensor (B.5). In light of Eqs. (61)–(62) we seek solution
for G(n)

j ({rk}) of the form

G
(n)
jm({rk})=

∑
i �=l

H il
jm({rk}) log(ril)+Hjm({rk}) , (66)
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whereHil
jm({rk}) andHjm({rk}) are polynomials of degreen. The latter is fully symmetric in the coor-

dinates. The former is symmetric inri , rl and separately in all the other{rk}k �=l,i . Substituting Eq. (66)
into Eq. (61) and collecting terms of the same type yields three equations:∑

i

∇2
i H

lk
jm = ∇l · ∇kE

(n)
jm , (67)

[d − 2+ rlk · (∇l − ∇k)]Hlk
jm +

r�
lkr

�
lk∇�

l ∇�
k

2d − 2
E

(n)
jm =−

r2
lkK

lk
jm

2
,∑

i

∇2
i Hjm =

∑
l �=k

Klk
jm . (68)

HereKlk
jm are polynomials of degreen− 2 which are separately symmetric in thel, k coordinates and in

all the other coordinates exceptl, k. In Ref.[103] it was proven that forj = 0 these equations possess a
unique solution. The proof follows through unchanged for anyj �= 0, and we thus proceed to finding the
solution.

By symmetry we can specialize the discussion tol = 1, k = 2. In light of Eq. (68) we see thatH 12
jm

must have at least a quadratic contribution inr12. This guarantees that (66) is non-singular in the limit
r12 → 0. The only part ofH 12

jm that will contribute to structure functions must containr3 . . . rn at least

once. SinceH 12
jm has to be a polynomial of degreen in the coordinates, it must be of the form

H 12
jm = r

�1
12r

�2
12r

�3
3 . . . r�n

n C�1�2...�n + [. . . ]1,2 , (69)

where[. . . ]1,2 contains terms with higher powers ofr12 and therefore do not contain some of the other
coordinatesr3 . . . rn. Obviously such terms are unimportant for the structure functions. SinceH 12

jm has
to be symmetric inr1, r2 andr3 . . . rn separately, and it has to belong to anjm sector, we conclude that
the constant tensorC must have the same symmetry and must belong to the same sector. Consulting
Appendix B the most general form ofC is

C�1�2...�n = aB
�1�2...�n
n,jm + b��1�2B

�3�4...�n
n−2,jm + c

∑
i �=l>2

��1�i��2�lB
�3�4...�n
n−4,jm . (70)

Substituting in Eq. (68) one find

(d + 2)H 12
jm +

r
�1
12r

�2
12r

�3
3 . . . r

�n
n

2d − 2
B

�1...�n
n,jm + 1

2
r
�1
12r

�2
12�

�1�2K
1,2
jm = [. . . ]1,2 .

Substituting Eq. (69) and demanding that coefficients of the termr
�1
1 . . . r

�n
n will sum up to zero, we obtain

−2(d + 2)a − 2

2d − 2
= 0, −2(d + 2)c = 0; ⇒ c = 0 .

The coefficientb is not determined from this equation due to possible contributions from the unknown
last term. We determine the coefficientb from Eq. (67). After substituting the forms we find

4��1�2r
�3
3 . . . r�n

n [aB�1...�n
n,jm + b��1�2B

�3�4...�n
n−2,jm ] = ��1�2r�3 . . . r�nB

�1...�n
n,jm + [. . . ]1,2 .
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Recalling identity (B.6) we obtainb = (zn,j /4d)[1− 4a]. Finally, we find thata is n, j -independent,
a =− 1

2(d+2)(d−1) , whereasb does depend onn andj, and we therefore denote it asbn,j

bn,j = (d + 1)

4(d + 2)(d − 1)
zn,j .

In the next subsection we compute from these results the scaling exponents in all the sectors of theSO(d)
symmetry group.

5.1.4. The scaling exponents of the structure functions
We now wish to show that the solution for the zero modes of the correlation functionsF

(n)
T (i.e.Z(n))

results in homogeneous structure functionsS
(n)
T . In every sectorj,m we compute the scaling exponents,

and show that they are independent ofm. Accordingly the scaling exponents are denoted�(n)j , and we
compute them to first order inε. Using (63) and (64), the structure function is given by

S
(n)
T ,jm(r1, r1; . . . ; rn, rn)

= ��1
1 . . .��n

n B
�1...�n
n,jm + ε

∑
i �=l

no i,l︷ ︸︸ ︷
��1

1 . . .��n
n f �i�l (ri , ri , rl , rl)[aB�1...�n

n,jm + bn,j�
�i�lB

no i,l︷ ︸︸ ︷
�1...�n
n−2,jm] ,

where��i
i ≡ r

�i
i − r

�i
i , and the functionf is defined as

f �i�l (ri , ri , rl , rl) ≡ (ri − rl)
�i (ri − rl)

�l ln |ri − rl|
+ (ri − rl)

�i (ri − rl)
�l ln |ri − rl| (71)

− (ri − rl)
�i (ri − rl)

�l ln |ri − rl|
− (ri − rl)

�i (ri − rl)
�l ln |ri − rl| . (72)

The scaling exponent ofS(n)T ,jm can be found by multiplying all its coordinates by�. A direct calculation
yields

S
(n)
T ,jm(� r1, � r1; . . .)= �nS(n)T ,jm(r1, r1; . . .)− 2ε�n ln �

∑
i �=l

no i,l︷ ︸︸ ︷
��1

1 . . .��n
n ��i

i ��l
l

× [aB�1...�n
n,jm + bn,j�

�i�lB

no i,l︷ ︸︸ ︷
�1...�n
n−2,jm] +O(ε2)

= �nS(n)jm(r1, r1; . . .)− 2ε�n ln ���1
1 . . .��n

n

×
∑
i �=l
[aB�1...�n

n,jm + bn,j�
�i�lB

no i,l︷ ︸︸ ︷
�1...�n
n−2,jm] +O(ε2) .
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Using (B.8), we find that
∑

i �=l[aB�1...�n
n,jm + bn,j�

�i�lB

no i,l︷ ︸︸ ︷
�1...�n
n−2,jm]= [n(n−1)a+ bn,j ]B�1...�n

n,jm , and therefore,
we finally obtain

S
(n)
T (� r1, � r1; . . .)= �n{1− 2ε[n(n− 1)a + bn,j ] ln �}S(n)T (r1, r1; . . .)+O(ε2)

= ��(n)j S
(n)
T (r1, r1; . . .)+O(ε2) .

The result of the scaling exponent is

�(n)j = n− 2ε

[
− n(n− 1)

2(d + 2)(d − 1)
+ (d + 1)

4(d + 2)(d − 1)
zn,j

]
+O(ε2) ,

where we remind the reader thatzn,j was defined in Appendix B. From the above expression Eq. (47)
follows directly. This is the final result of this calculation.

It is noteworthy that this result is in full agreement with (56), even though the scaling exponents that
appear in these result refer to different quantities. The way to understand this is the fusion rules that are
discussed next.

5.1.5. Fusion rules
The fusion rules address the asymptotic properties of the fully unfused structure functions when two or

more of the coordinates are approaching each other, whereas the rest of the coordinates remain separated
by much larger scales. A full discussion of the fusion rules for the Navier–Stokes and the Kraichnan
model can be found in[58,59,105]. In this section we quote the fusion rules that were derived in Ref.
[29] directly from the zero modes that were computed toO(ε), in all the sectors of the symmetry group.
In other words, we are after the dependence of the structure functionS

(n)
T (r1, r 1; . . .) on its first p

pairs of coordinatesr1, r 1; . . . ; rp, rp in the case where these points are very close to each other com-
pared to their distance from the othern–p pairs of coordinates. Explicitly, we consider the case where
r1, r 1; . . . ; rp, rp>rp+1, rp+1; . . . ; rn, r n. (We have used here the property of translational invariance
to put the center of mass of the first 2p coordinates at the origin.) The full calculation is presented in[29],
with the final result (toO(ε))

S
(n)
T ,jm(r1, r 1; . . . ; rn, r n)=

p∑
l=lmax

∑
m′

�l,m′S
(p)

T ,lm′(r1, r 1; . . . ; rp, rp) .

In this expression the quantity�l,m′ is a tensor function of all the coordinates that remain separated by
large distances, and

lmax=max{0, p + j − n}, j�n .

We have shown that the LHS has a homogeneity exponent�(n)j . The RHS is a product of functions with

homogeneity exponents�(p)l and the functions�l,m′ . Using the linear independence of the functionsS
(p)

T ,lm′

we conclude that�l,m′ must have homogeneity exponent�(n)j − �(p)l . This is precisely the prediction of
the fusion rules, but in each sector separately. One should stress the intuitive meaning of the fusion rules.
The result shows that whenp coordinates approach each other, the homogeneity exponent corresponding
to these coordinates becomes simply�(p)l as if we were considering ap-order correlation function.
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The meaning of this result is thatp field amplitudes measured atp close-by coordinates in the presence
of n–p field amplitudes determined far away behave scaling-wise likep field amplitudes in the presence
of anisotropic boundary conditions.

5.1.6. The Lagrangian approach to anomalous scaling
An elegant approach to the correlation functions is furnished by Lagrangian dynamics[120–125]. In

this formalism one recognizes that the actual value of the scalar at positionx at timet is determined by
the action of the forcing along the Lagrangian trajectory fromt =−∞ to t:

T (x0, t0)=
∫ t0

−∞
dt〈f (x(t), t)〉� , (73)

with the trajectoryx(t) obeying

x(t0)= x0, �tx(t)= u(x(t), t)+√2��(t) , (74)

and� is a vector of zero-mean independent Gaussian white random variables,〈	�(t)	�(t ′)〉=����(t− t ′).
With this in mind, we can rewriteS(2n)T of Eq. (53) by substituting each factor ofT (xi) by its representation
(73). Performing the averages over the random forces, we end up with

S
(2n)
T (x1, . . . , x2n, t0)=

〈∫ t0

−∞
dt1 · · ·dtn[�(x1(t1)− x2(t1)) · · · (75)

×�(x2n−1(tn)− x2n(tn))+ permutations]
〉

u,{�i}
. (76)

To understand the averaging procedure recall that each of the trajectoriesxi obeys an equation of the
form (74), whereu as well as{�i}2ni=1 are independent stochastic variables whose correlations are given
above. Alternatively, we refer the reader to section II of[125], where the above analysis is carried out
in detail. Here we follow the derivation of Ref.[120]. In considering Lagrangian trajectories ofgroups
of particles, we should note that every initial configuration is characterized by acenter of mass, sayR,
a scale s(say the radius of gyration of the cluster of particles) and ashapeZ. In “shape” we mean here
all the degrees of freedom other than the scale andR: as many angles as are needed to fully determine
a shape, in addition to the Euler angles that fix the shape orientation with respect to a chosen frame of
coordinates. Thus a group of 2n positions{xi} will be sometime denoted below as{R, s,Z}.

One component in the evolution of an initial configuration is a rescaling of all the distances which
increase on the average liket1/�2; this rescaling is analogous to Richardson diffusion. The exponent
�2 which determines the scale increase is also the characteristic exponent of the second-order structure
function[100]. This has been related to the exponentε of (52) according to�2 = 2− ε. After factoring
out this overall expansion we are left with a normalized ‘shape’. It is the evolution of this shape that
determines the anomalous exponents.

Consider a final shapeZ0 with an overall scales0 which is realized att = 0. This shape has evolved
during negative times. We fix a scales > s0 and examine the shape when the configuration reaches the
scales for the last time before reaching the scales0. Since the trajectories are random the shapeZ which
is realized at this time is taken from a distribution�(Z;Z0, s → s0). As long as the advecting velocity
field is scale invariant, this distribution can depend only on the ratios/s0.
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Next, we use the shape-to-shape transition probability to define an operator�̂(s/s0) on the space of
functions�(Z) according to

[�̂(s/s0)�](Z0)=
∫

dZ�(Z;Z0, s → s0)�(Z) .

We will be interested in the eigenfunction and eigenvalues of this operator. This operator has two important
properties. First, for an isotropic statistics of the velocity field the operator is isotropic. This means that
this operator commutes with all rotation operators on the space of functions�(Z). In other words, if
O� is the rotation operator that takes the function�(Z) to the new function�(�−1Z), thenO��̂ = �̂O�.
This property follows from the obvious symmetry of the Kernel�(Z;Z0, s → s0) to rotatingZ and
Z0 simultaneously. Accordingly, the eigenfunctions of�̂ can be classified according to the irreducible
representations ofSO(3) symmetry group. Because in this section we are not computing explicitly the
exponents we do not need to present the precise form of the eigenfunctions and we will denote them for
simplicity asBqjm(Z). The second important property of�̂ follows from the�-correlation in time of the
velocity field. Physically, this means that the future trajectories ofn particles are statistically independent
of their trajectories in the past. Mathematically, it implies for the kernel that

�(Z;Z0, s → s0)=
∫

dZ1�(Z;Z1, s → s1)�(Z1;Z0, s1 → s0), s > s1>s0

and in turn, for the operator, that

�̂(s/s0)= �̂(s/s1)�̂(s1/s0) .

Accordingly, by a successive application of�̂(s/s0) to an arbitrary eigenfunction, we get that the eigen-

values of̂� have to be of the form�q,j = (s/s0)
�(2n)j :

(
s

s0

)�(2n)j

Bqjm(Z0)=
∫

dZ�(Z;Z0, s → s0)Bqjm(Z) . (77)

From Schur’s lemmas one can prove that the eigenvalues do not depend onm. On the other hand, they
can still be a function ofq but for simplicity of notation we do not explicitly carry theq index in�.

To proceed we want to introduce into the averaging process in (76) by averaging over Lagrangian
trajectories of the 2n particles. This will allow us to connect the shape dynamics to the statistical objects.
To this aim consider any set of Lagrangian trajectories that started att=−∞ and end up at timet=0 in a
configuration characterized by a scales0 and center of massR0=0. A full measure of these have evolved
through the scaleL or larger. Accordingly they must have passed, during their evolution from timet=−∞
through a configuration of scales > s0 at least once. Denote now�2n(t, R,Z; s → s0,Z0)dt dRdZ
as the probability that this set of 2n trajectories crossed the scales for the last time before reaching
s0,Z0, betweent andt + dt , with a center of mass betweenR andR+ dR and with a shape betweenZ
andZ+ dZ.
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In terms of this probability we can rewrite Eq. (76) (displaying, for clarity,R0= 0 andt = 0) as

S
(2n)
T (R0= 0, s0,Z0, t = 0)=

∫
dZ

∫ 0

−∞
dt
∫

dR�2n(t, R,Z; s → s0,Z0)

×
〈∫ 0

−∞
dt1 · · ·dtn[�(x1(t1)− x2(t1)) · · ·�(x2n−1(tn)− x2n(tn))

+perms]|(s;R,Z, t)

〉
u,�i

. (78)

The meaning of the conditional averaging is an averaging over all the realizations of the velocity field
and the random�i for which Lagrangian trajectories that ended up at timet = 0 in R= 0, s0,Z0 passed
throughR, s,Z at timet.

Next, the time integrations in the above equation are split to the interval[−∞, t] and[t,0] giving rise
to 2n different contributions:∫ t

−∞
dt1 · · ·

∫ t

−∞
dtn +

∫ 0

t

dt1

∫ t

−∞
dt2 · · ·

∫ t

−∞
dtn + · · · .

Consider first the contribution withn integrals in the domain[−∞, t]. It follows from the delta-correlation
in time of the velocity field, that we can write〈∫ t

−∞
dt1 · · ·dtn[�(x1(t1)− x2(t1)) · · ·�(x2n−1(tn)− x2n(tn))+ perms]|(s;R,Z, t)

〉
u,�i

=
〈∫ t

−∞
dt1 · · ·dtn[�(x1(t1)− x2(t1)) · · ·�(x2n−1(tn)− x2n(tn))+ perms]

〉
u,�i

= S
(2n)
T (R, s,Z, t)= S

(2n)
T (s,Z) . (79)

The last equality follows from translational invariance in space–time. Accordingly the contribution with
n integrals in the domain[−∞, t] can be written as∫

dZS
(2n)
T (s,Z)

∫ 0

−∞
dt
∫

dR�2n(t, R,Z; s → s0,Z0) .

We identify the shape-to-shape transition probability

�(Z;Z0, s → s0)=
∫ 0

−∞
dt
∫

dR�2n(t, R,Z; s → s0,Z0) . (80)

Finally, putting all this added wisdom back in Eq. (78) we end up with

S
(2n)
T (s0,Z0)= I +

∫
dZ�(Z;Z0, s → s0)S

(2n)
T (s,Z) . (81)

Here I represents all the contributions with one or more time integrals in the domain[t,0]. The key
point now is that only the term withn integrals in the domain[−∞, t] contains information about the
evolution of 2n Lagrangian trajectories that probed the forcing scaleL. Accordingly, the term denoted by
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I cannot contain information about the leading anomalous scaling exponent belonging toF2n, but only of
lower-order exponents. The anomalous scaling dependence of the LHS of Eq. (81) has to cancel against
the integral containingF2n without the intervention ofI.

Representing now

S
(2n)
T (s0,Z0)=

∑
qjm

aq,jm(s0)Bqjm(Z0) ,

S
(2n)
T (s,Z)=

∑
qjm

aq,jm(s)Bqjm(Z) ,

I =
∑
qjm

IqjmBqjm(Z0) (82)

and substituting on both sides of Eq. (81) and using Eq. (77) we find, due to the linear independence of
the eigenfunctionsBqjm

aq,jm(s0)= Iqjm +
(
s

s0

)�(2n)j

aq,jm(s).

To leading order the contribution ofIqjm is neglected, leading to the conclusion thatthe spectrum of
anomalous exponents of the correlation functions is determined by the eigenvalues of the shape-to-shape
transition probability operator. Calculations show that the leading exponent in the isotropic sector is
always smaller than the leading exponents in all other sectors. This gap between the leading exponent in
the isotropic sector to the rest of the exponents determines the rate of decay of anisotropy upon decreasing
the scale of observation.

The derivation presented above has used explicitly the properties of the advecting field, in particular
the�-correlation in time. Accordingly it cannot be immediately generalized to more generic situations
in which there exist time correlations. Nevertheless, we find it pleasing that at least in the present case
we can trace the physical origin of the exponents anomaly, and connect it to the underlying dynamics.
In more generic cases the mechanisms may be more complicated, but one should still keep the lesson in
mind—higher-order correlation functions depend on many coordinates, and these define a configuration
in space. The scaling properties of such functions may very well depend on how such configurations
are reached by the dynamics. Focusing on static objects like structure functions of one variable may be
insufficient for the understanding of the physics of anomalous scaling. Important confirmation of this
picture have been found recently also for the case of passive scalars advected by a 2d turbulent flow in
the inverse cascade regime[126] and for the case of shell models for passive scalars advection[127].

5.1.7. Summary and discussion
The main lesson from this subsection is that the scaling exponents form a discrete and strictly increasing

spectrum as a function ofj. This is the first example where this can be shown rigorously. The meaning
of this result is that for higherj the anisotropic contributions to the statistical objects decay faster upon
decreasing scales. The rate of isotropization is determined by the difference between thej dependent
scaling exponents, and is of course a power law. The result shows that to first order inε the j-dependent
part is independent of the order of the correlation function. This means that the rate of isotropization of
all the moments of the distribution function of field differences across a given scale is the same. This is
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a demonstration of the fact that, toO(ε) the distributions function itself tends toward a locally isotropic
distribution function.

The second lesson from this first exactly solvable example was the correspondence between the scaling
exponents of the zero modes in the inertial interval and the corresponding scaling exponents of the gradient

fields. The latter do not depend on any inertial scales, and the exponent appears in the combination(�/	)�
(n)
j

where	 is the appropriate ultraviolet inner cutoff. We found exact agreement with the exponents of the
zero modes in all the sectors of the symmetry group and for all values ofn. The deep reason behind this
agreement is the linearity of the fundamental equation of the passive scalar (48). This translates to the
fact that the viscous cutoff	 is n andj independent and also does not depend on the inertial separations
in the unfused correlation functions. This point has been discussed in detail in[105,128]. In the case of
Navier–Stokes statistics we expect this “trivial” correspondence to fail. Nevertheless, many attempts have
been done to describe the matching between the inertial and dissipative scaling properties[58,129,130]
for the isotropic sector. Finally, we note that in the present case we have displayed the fusion rules in
all the j sectors, using theO(ε) explicit form of the zero modes. We expect the fusion rules to have a
nonperturbative validity for any value ofε.

An interesting modification of Kraichnan models has been recently proposed in[131]where the scaling
properties of a passive scalar advected by a Kraichnan-like shear flow are investigated. The anisotropy
introduced by the shear breaks the foliations of the correlation functions equations. Nevertheless, the
authors have been able to explain the existence of a scaling range in the passive spectrum with anomalous
slope (i.e. different from the result obtained in absence of shear), for scales larger than the typical shear
length in the system. This anomalous slope is due to the fast advection of passive particles in the mean
shear direction.

5.2. Passively advected magnetic field

Another exactly solvable system of some interest is the case of passively advected magnetic field.
This model was first proposed in[112]. It describes the advection of a magnetic fieldB(x, t) by the
same Kraichnan stochastic velocity field described in Eq. (49). The equation of motion for the magnetic
field is

�tB(x, t)+ [u(x, t) · ∇]B(x, t)− [B(x, t) · ∇]u(x, t)= �∇2B(x, t)+ f(x, t) , (83)

which has to be supplemented by the solenoidality condition∇ ·B(x, t)=0. The source (“forcing”) term
f(x, t) is a solenoidal vector field that is responsible for injecting the magnetic field into the system at
large scales. The second-order moment of the source field here is a second-order solenoidal tensor

〈f �(x+ r, t ′)f �(x, t)〉 ≡ �(t − t ′)A��
( r

L

)
, (84)

instead of a scalar. The tensorA��( y) is used to mimic large-scale anisotropic boundary conditions and
is therefore taken to be anisotropic, analytic iny and vanishing rapidly fory?1. Finally, the dissipative
term�∇2B(x, t) dissipates the magnetic field out of the system at small scales.

Note that in order to keep the magnetic field solenoidal, Eq. (83) contains a “stretching” term
[B(x, t) · ∇]u(x, t). This term may cause a “dynamo effect”, which is what happens when the mag-
netic field amplifies itself by extracting kinetic energy from the velocity field[132]. Such effect can
destabilize the system, and prevents it from reaching a stationary state.
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Just as in the Kraichnan passive scalar case, we can use the fact that both the velocity and source fields
are white-noise Gaussian processes, and derive a closed set of equations for the simultaneousnth-order
correlation functions of the magnetic field. For example, the equation of motion for the second-order
magnetic correlation function

C��(r, t) ≡ 〈B�(x+ r, t)B�(x, t)〉
can be easily derived[112]:

�tC
�� =K������C

�� − [(��K
��)��C

�� + (��K
��)��C

��]
+ (����K

��)C�� + 2�∇2C�� + A�� ≡ T̂ ��
�� C

�� + A�� , (85)

where one has to add also the solenoidal condition for the magnetic field,��C
�� = 0 and the tensorK��

is the two-point velocity correlation (52). The solution of (85) was found in[112]. It was shown there
that for 0< ε<1 no dynamo occurs, while forε>1 a dynamo is developed. Consequently for 0< ε<1,
the system may reach a stationary state where the correlation function of the magnetic field behaves
like a power law in the inertial range. In[112] the zero modes of the second-order correlation function
was calculated and its anomalous scaling in the isotropic sector was found for any 0�ε�1. Notice that
for this passive vector model, the absence of any conservation law for the magnetic energy allows for
anomalous scaling already for the second-order correlation in the isotropic sector, at difference from
what happens in the passive scalar case discussed in Section 5.1.1. This was the first case where a fully
non-perturbative analytical solution was presented demonstrating the possibility of having anomalous
scaling in hydrodynamic problems.

In Refs.[30,31] this analysis was generalized to all the sectors of theSO(3) group using theSO(3)
decomposition. Here we review the results presented in Ref.[30] where a systematic non-perturbative
study of the solutions of (85) was given in all(j,m) sectors of theSO(3)group. As usual, it is advantageous
to decompose the covarianceC�� in terms of basis functions that block-diagonalize the angular part of
the operator̂T, which is invariant to all rotations. In addition,T̂ is invariant to the parity transformation
r →−r, and to the index permutation(�, �)⇔ (�, �). Accordingly,T̂ can be further block-diagonalized
into blocks with definite parity and symmetry under permutations.

In light of these consideration we seek solutions in terms of the decomposition given in (34):

C��(r, t)=
∑
q,j,m

C
(2)
q,jm(r, t)B

��
q,jm(r̂) . (86)

As discussed in Section 4.2.2 the nine basis functions can be grouped in four sub-groups depending
on their symmetries under parity and index permutation (37). It should be noted that not all subsets
contribute for every value ofj. Space homogeneity implies the obvious symmetry of the covariance:
C��(r, t)=C��(−r, t). Therefore representations symmetric to�, � exchange must also have even parity,
while antisymmetric representations must have odd parity. Accordingly, evenj’s are associated with
subsets I and III, and oddj’s are associated with subset II. Subset IV cannot contribute to this theory due
to the solenoidal constraint (see Appendix A).

5.2.1. The matrix representation of the operatorT̂
Having the angular basis functions we seek the representation of the operatorT̂ in this basis. In such

a representation̂T is a differential operator with respect tor only. In Appendix A of[30] it is shown
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how T̂ mixes basis functions within a given subset, but not between the subsets. In finding the matrix
representation of̂T we are aided by the incompressibility constraint. Consider first subset I made of the
four symmetric and with(−)j parity basis functions:B��

q,jm(r̂) with q = 1,5,7,9 in a givenj,m sector.

To simplify the notation we denote the coefficients according toa(r) ≡ C
(2)
9jm(r), b(r) ≡ C

(2)
7jm(r),

c(r) ≡ C
(2)
1jm(r) andd(r) ≡ C

(2)
5jm(r). Primes will denote differentiation with respect tor.

In this basis the operatorT̂ takes on the form

T̂ [C(r, t)] = T1


a′′
b′′
c′′
d ′′

+ T2


a′
b′
c′
d ′

+ T3


a

b

c

d

 . (87)

On the RHS we have matrix products. In addition, the solenoidal condition implies the following two
constrains ona, b, c andd (cf. the appendix of[27]):

0= a′ + 2
a

r
+ jb′ − j2b

r
+ c′ − j

c

r
,

0= b′ + 3
b

r
+ c

r
+ (j − 1)d ′ − (j − 1)(j − 2)

d

r
.

Using these conditions one can bringT1 andT2 to diagonal forms,

T1= 2(Drε + �)1, T2= 4

r
[(Drε + �)+ εDrε]1 ,

where1 is the unit matrix.T3 can be written in the form

T3=Drε−2Q(j, ε)+ �r−2Q(j,0).

The explicit expression for the four columns ofQ(j, ε) can be found in[30]. In Appendix B of[30] the
two remaining blocks (subsets II, III after the list (37)), in the matrix representation ofT̂ as a function
of j have been also investigated. The single basisB3,jm (subset IV) cannot appear in the theory since

C
(2)
3jm = 0 by the solenoidal condition (cf. appendix of[27]). Lastly, there are no solutions belonging to

thej =1 sector. This is due to the fact that such solutions correspond to subset II. In this subset thej =1
solenoidal condition implies the equation:(d/dr)C(2)

81m + 3C(2)
81m/r = 0, orC(2)

81m ∝ r−3 which is not an
admissible solution.

5.2.2. Calculation of the scaling exponents
Before turning to the computation of the exponents, one should consider the existence of a stationary

solution fort → ∞. In [112] it was showed that there is not dynamo in the isotropic sector as long as
ε<1. In [30] it has been demonstrated that for the same values ofε, the dynamo effect is absent also
in the anisotropic sectors. The reader is referred to[30] for details on this subject. In the absence of a
dynamo effect, we can consider a stationary state of the system, maintained by the forcing termf(r, t).
The covariance in such a case will obey the following equation:

T̂ ��
�� C

�� + A�� = 0 .
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Deep in the inertial range we look for scale-invariant solutions of the above equation neglecting the
dissipative terms. The most general scale-invariant solution can be expressed as a linear superposition of
homogeneous (zero modes) and non-homogeneous solutions of the above equation:

C��(r)= C
��
hom(r)+ C

��
non-h(r).

In particular, only zero modes can carry anomalous scaling, being the scaling properties of the non-
homogeneous solutions fixed by the dimensional matchingT̂

��
�� C

�� ∼ A��. Therefore, the existence of a
leading anomalous scaling contribution to small-scales magnetic fluctuations is connected to the existence
of at least one zero mode with a scaling exponent smaller than the dimensional estimate.

The calculation of the scale-invariant solutions becomes rather immediate once we know the functional
form of the operator̂T in the basis of the angular tensorsBq,jm. Using expansion (86), and the fact thatT̂
is block diagonalized by such an expansion, we get a set of second-order coupled ODE’s for each block.
To demonstrate this point, consider the four-dimensional block ofT̂, created by the four basis tensors
Bq,jm of subset I. According to the notation of the last section, we denote the coefficients of these angular
tensors in (86), by the four functionsa(r), b(r), c(r), d(r):

C��(r) ≡ a(r)B
��
9,jm + b(r)B

��
7,jm + c(r)B

��
1,jm + d(r)B

��
5,jm + · · · ,

where (· · ·) stand for terms with otherj,m and other symmetries with the samej,m. Let us first consider
the case where�>0. According to (87), well within the inertial range, these functions obey

T1(�= 0)


a′′
b′′
c′′
d ′′

+ T2(�= 0)


a′
b′
c′
d ′

+ T3(�= 0)


a

b

c

d

= 0 . (88)

Due to the scale invariance of these equations, we look for scale-invariant solutions in the form

a(r)= ar�, b(r)= br�, d(r)= cr�, d(r)= dr� , (89)

wherea, b, c, d are complex constants. Substituting (89) into (88) results in a set of four linear homoge-
neous equations for the unknownsa, b, c, d:

[�(�− 1)T1(�= 0)+ �T2(�= 0)+ T3(�= 0)]

a

b

c

d

= 0 .

The last equation admits non-trivial solutions only when

det[�(�− 1)T1(�= 0)+ �T2(�= 0)+ T3(�= 0)] = 0 .

This solvability condition allows us to express� as a function ofj andε. Using MATHEMATICA one
finds eight possible values of�, out-of-which, only four are in agreement with the solenoidal condition:

�(2)j (i)=−1
2 ε− 3

2 ± 1
2

√
H(ε, j)± 2

√
K(ε, j), i = 1,2,3,4 ,

K(ε, j) ≡ ε4− 2ε3+ 2ε3j + 2ε3j2− 4ε2j − 3ε2− 4ε2j2− 8εj2

− 8εj + 4ε+ 16j + 16j2+ 4 ,
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H(ε, j) ≡ −ε2− 8ε+ 2εj2+ 2εj + 4j2+ 4j + 5 . (90)

Not all of these solutions are physically acceptable because not all of them can be matched to the zero-
mode solutions in the dissipative regime. To see why this is so, consider the zero-mode equation for
ε= 0:

(2�+ 2D)∇2C= 0 . (91)

The main difference between theε=0 case and theε>0 case is that in the former the same scale-invariant
equation holdsbothfor the inertial range and the dissipative range. As a result, forε= 0, the zero-mode
scale with the same exponents in the two regimes. These exponents are given simply by (90) withε= 0,
because forε=0 the zero-mode equation with�=0 is the same as (91) up to the overall factorD/(D+�)
which does not change the exponent. Forε= 0th solutions should be valid for the dissipative regime as
well as for the inertial regime, ruling out the two solutions with negative exponents in (90), for they will
give a non-physical divergence asr → 0. Assuming now that the solutions (including the exponents) are
continuous inε (and not necessarily analytic!), one finds that also for finiteε only the positive exponents
appear in the inertial range (an exception to that is thej = 0, to be discussed below). Finally, there are
two branches of solutions corresponding to the (−) and (+) in the square root.

�(2)j =−3
2 − 1

2 ε+ 1
2

√
H(ε, j)± 2

√
K(ε, j), subset I .

Note that forj = 0, only the branch with the+ sign under the square root exists since the other exponent
is not admissible, being negative forε → 0, and therefore excluded by continuity.�(2)0 however becomes
negative asε increases. Forj�2 both solutions are admissible, and the leading is that one with the minus
sign in the square root.

Let us also discuss the behavior of the zero modes in the dissipative regime forε>0. Here the dissipation
terms become dominant, and we can neglect all other terms inT̂. The zero-mode equation in this regime
becomes 2�∇2C�� = 0, which is again, up to an overall factor, identical to the zero-mode equation
with � = 0, ε = 0. The solutions in this region are once again scale invariant with scaling exponents
�(2)j |ε=0 = j, j − 2. As expected, the correlation functionC��(r) becomes smooth in the dissipative
regime.

In [30] the computation of the exponents corresponding to subsets II and III is also presented. The
result is

�(2)j =−3
2 − 1

2 ε+ 1
2

√
1− 10ε+ ε2+ 2j2ε+ 2jε+ 4j + 4j2, subset II ,

�(2)j =−3
2 − 1

2 ε+ 1
2

√
ε2+ 2ε+ 1+ 4j2+ 2j2ε+ 4j + 2εj, subset III .

For j = 0 there is no contribution from this subset, as the exponent is negative. After matching the zero
modes to the dissipative range, one has to guarantee matching at the outer scaleL. The condition to be
fulfilled is that the sum of the zero modes with the inhomogeneous solutions (whose exponents are 2-ε)
must giveC(r) → 0 as|r| → L. Obviously, this means that the forcing must have a projection on any
sectorBq,jm for whichC(2)

q,jm is non-zero.
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5.2.3. Summary and conclusions
The results of this section should be examined in the light of the previous section on passive scalars.

That passive scalar case afforded only perturbative calculation of anomalous exponents in all anisotropic
sectors. The present example offers exact, non-perturbative calculations, of the whole spectrum of scaling
exponents that determines the covariance of a vector field in the presence of anisotropy. The main conclu-
sions are: (i) scaling exponents of the second-order magnetic correlation functions are anomalous; (ii) they
are strictly increasing with the index ofj of the sector, meaning that there is a tendency toward isotropiza-
tion upon decreasing the scales of observation. The equations for the magnetic covariance foliate into
independent closed equations for each set of irreducible representations of theSO(3) group. Moreover,
scaling properties of the zero modes do not show any dependence on theq index labeling projections
on different irreducible representations of theSO(3) groups for each fixed(j,m). The consequence of
the latter property is that transversal and longitudinal correlation have the same scaling exponents within
each anisotropic sector.

5.3. The linear pressure model

In this subsection we discuss the scaling exponents characterizing the power-law behavior of the
anisotropic components of correlation functions in turbulent systems with pressure, exploring the funda-
mental question whether also for such systems the scaling exponents increase asj increases, or they are
bounded from above. The equations of motion in systems with pressure contain nonlocal integrals over
all space. One could argue that the requirement of convergence of these integrals bounds the exponents
from above. It is shown here on the basis of a solvable model (the “linear pressure model”), that this is
not necessarily the case. The model described here is of a passive vector advection by a rapidly varying
velocity field[32]. The advected vector field is divergent free and the equation contains a pressure term
that maintains this condition. The zero modes of the second-order correlation function are found in all
the sectors of the symmetry group. We show that the spectrum of scaling exponents can increase withj
without bounds, while preserving finite integrals. The conclusion is that contributions from higher and
higher anisotropic sectors can disappear faster and faster upon decreasing the scales also in systems with
pressure. To demonstrate that, consider a typical integral term of the form,∫

dyG(r − y)C(y) . (92)

HereG(r)=−1/(4�r) is the infinite domain Green function of the Laplacian operator, andC(r) is some
statistical object which is expected to be scale invariant in the inertial range. IfC(r) has an infrared cross
over at scaleL (or equivalently, the integral has an infrared cutoff at scaleL), then the above expression
will not be a pure power law ofr, not even inside the inertial range. Then how is it possible that such
an expression will cancel out a local term ofC(r), as is required by the typical equations of motion?
This puzzle has led in the past to the introduction of the concept of “window of locality”[133,134]. The
window of locality is the range for the scaling exponents in which no divergence occurs, even if the cross
over lengthL is taken to infinity. For these exponents integrals of type (92) are dominated by the range
of integrationy ≈ r and are therefore termed “local”. In a “local” theory no infrared cutoff is called for.

In this subsection we present solutions for the scaling exponents in the anisotropic sectors of a linear
model of turbulence with pressure. This model reveals two mechanisms that allow an unbounded spectrum
of scaling exponents. First, a careful analysis of the window of locality in the anisotropic sectors shows
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that it widens asj increases. We always have a leading scaling exponent within the window of locality.
Secondly, there is a more subtle mechanism that comes to play when sub-leading exponents exist outside
the window of locality. In these cases we show that there exist counter-terms in the exact solution (not
the zero modes!) which maintain the locality of the integrals. The bottom line is that in these models the
anisotropic exponents are unbounded from above leading to a fast decay of the anisotropic contributions
in the inertial range. The linear pressure model captures some of the aspects of the pressure term in
Navier–Stokes turbulence, while being a linear and therefore much simpler problem. The non-linearity
of the Navier–Stokes equation is replaced by an advecting Kraichnan fieldu(x, t) and an advected field
v(x, t). The advecting fieldu(x, t) is taken, as before, the Kraichnan field (49). Both fields are assumed
incompressible. The equation of motion for the vector fieldv�(x, t) is

�t v
� + u���v

� + ��p − ��2v� = f � , (93)
��v

� = ��u
� = 0 . (94)

In this equation,f(x, t) is the same as the one in Eq. (83). Analyticity off(x, t) is an important requirement.
It means thatA��(x) can be expanded for small|x|as a power series inx�; as a result its leading contribution
in thej-sector is proportional toxj−2, given by����xjYjm(x̂). To see that this is the leading contribution
the reader can consult the general discussion of the construction of the irreducible representations in
Ref. [27]. All other analytic contributions contain less derivatives and are therefore of higher order inx.

In order to derive the statistical equations of the correlation function ofv�(x, t), we need a version of
(93) without the pressure term. Following the standard treatment of the pressure term in Navier–Stokes
equation, we take the divergence of (93) and arrive at,

����u
�v� + �2p = 0 .

The Laplace equation is now inverted using the Green function of infinite domain with zero-at-infinity
boundary conditions:

p(x)=−
∫

dyG(x− y)����u
�(y)v�(y) .

With this expression forp(x), Eq. (93) can be rewritten as

�t v
�(x, t)+ u�(x, t)��v

�(x, t)− ��
(x)

∫
dyG(x− y)����u

�(y)v�(y)− ��2v�(x, t)= f �(x, t) .

In [32] the equation of motion for the two-point correlation function,C��(r) ≡ 〈v�(x + r)v�(x)〉 was
found:

�tC
��(r)− T ��(r)− T ��(−r)+

∫
dyG(r − y)����T

��(y)

+
∫

dyG(−r − y)����T
��(y)− 2��2C��(r)

= 〈v�(x+ r)f �(x)〉 + 〈v�(x)f �(x+ r)〉 ,

where to simplify the equations we have defined an auxiliary functionT ��(r):

T ��(r) ≡ �(r)� 〈v�(x+ r)u�(x)v�(x)〉 .
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This equation is identical to the equation for the second-order correlation function in the usual Navier–
Stokes turbulence, provided thatu� is replaced withv� in the expression above. Indeed, the vexing problem
that we face is being made very clear: if the triple correlation function has a power-law dependence onr
with an arbitrarily large exponent, how can the integral converge in the infrared? One possibility is that the
scaling exponent ofT ��(r) is sufficiently low, making the integral convergent. The other possibility is that
the correlation function is scale invariant only in the inertial range and vanishes quickly after that, which
is equivalent to the introduction of an infrared cutoff. However the integral terms in the equation probe
the correlation function throughout the entire space. Therefore, a cross over behavior of the correlation
function at the outer scaleL, seems to contradict a pure scaling behavior of the correlation function in
the inertial range itself. This in turn implies the saturation of the anisotropic scaling exponents.

To proceed, we use the fact that the fieldu(x, t), as well as the forcing, are Gaussian white noise with
correlation given by Eq. (52). This enables us to expressT ��(r) and the correlation of the force in terms
of C��(r) andA��(r). One can use the well-known method of Gaussian integration by parts[5] which
leads to the final equations (see also appendix of[32]):

�tC
��(r)= T ��(r)+ T ��(−r)−

∫
dyG(r − y)����T

��(y)

−
∫

dyG(−r − y)����T
��(y)+ 2��2C��(r)+ A��(r) , (95)

T ��(r)= − 1

2
K������C

��(r)+ 1

2
��
(r)

∫
dyG(r − y)��[K��(y)����C

��(y)]

− 1

2

∫
dyG(y)����[K��(y)����C

��(r − y)] . (96)

These equations have to be supplemented with two more equations that follow directly from the definition
of C��(r):

��C
��(r)= 0 , C��(r)= C��(−r) .

Finally, we note that Eqs. (95,96) can be interpreted in a transparent way, utilizing two projection operators
which maintain the RHS of Eq. (95) divergence free in both indices. To define them, let us consider a
tensor fieldX��(r) which vanishes sufficiently fast at infinity. Then the two projection operatorsP̂L and
P̂R are defined by

P̂LX
��(r) ≡ X��(r)− ��

(r)

∫
dyG(r − y)��X

��(y) ,

P̂RX
��(r) ≡ X��(r)− ��

(r)

∫
dyG(r − y)��X

��(y) .

We observe that̂PLX
�� andP̂RX

�� are divergence free in the left and right indices, respectively. Using
these operators we can rewrite Eqs. (95,96) in the form

�tC
��(r)= P̂RT

��(r)+ P̂RT
��(−r)+ 2��2C��(r)+ A��(r) , (97)

T ��(r)=−1

2
P̂LK

������C
��(r)− 1

2

∫
dyG(y)����[K��(y)����C

��(r − y)] . (98)
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The projection in Eq. (98) guarantees thatT ��(r) is divergence-free in its left index, while the projection
in Eq. (97) guarantees divergence freedom in the right index.

Not all the terms in these equations are of the same nature. The integrals due to the projection operator
are easy to deal with by applying a Laplacian on them. For example,�2P̂RT

��(r)=�2T ��(r)−����T
��(r).

On the other hand, there seems to be no way to eliminate the last integral in Eq. (98), and therefore we
shall refer to it as the “non-trivial integral”. Only when the velocity scaling exponents in (52) areε=0 and
ε=2 it trivializes: the integral vanishes whenε=0 and is proportional toC��(r)whenε=2. Unfortunately,
in these extreme cases also the projection operator trivializes, and the effect of the pressure cannot be
adequately assessed. We prefer to study the problem for a generic valueε for which the incompressibility
constraint and the pressure terms are non-trivial.

We deal with this problem head-on in Section 5.3.4. Due to the non-trivial integral, we will not be able
to provide a full solution ofC��(r) but only of the zero modes. However, before doing so, we would like
to study a model that affords an exact solution in order to understand in detail the issues at hand. In the
next section, we therefore consider a simplified model of the linear pressure model, which nonetheless
poses much of the same riddle.

5.3.1. An exactly solvable toy model
We construct a toy model which is inspired by Eqs. (95,96) for the correlation function in the linear

pressure model. Within this model we demonstrate the strategy of dealing with the non-local pressure
term. Since it is a simplification of thestatisticalequation of the linear pressure model, the toy model has
no obvious underlying dynamical equation.

In the toy model, we are looking for a “correlation function”C�(r), whose equations of motion are:

�tC
�(r)= −K��(r)����C

�(r)− ��
(r)

∫
dxG(r − x)��K

��(x)����C
�(x)

+ ��2C�(r)+ A�(r/L) ,

��C
�(r)= 0 . (99)

HereA�(x) is a one-index analog of the correlation function of the original forcesA��(x). Accordingly,
we take it anisotropic, analytic inx� and rapidly vanishing forx?1. As in the previous model, also here
analyticity requires that the leading contribution for smallx is proportional to��xjYjm(x̂) in thej-sector.
Accordingly it is of orderxj−1.

The toy model is simpler than the linear pressure model in two aspects: First, the “correlation function”,
C�(r) has one index instead of two and therefore can be represented by a smaller number of scalar
functions. Second, the unpleasant non-trivial term of the linear pressure model is absent. This will allow
us to solve the model exactly for every value ofε. Nevertheless, the toy model confronts us with the same
conceptual problems that exist in the linear pressure model and in NS: can a scale-invariant solution in
the inertial range with a cross over to a decaying solution at scaleL, be consistent with the integral term?
If not, is there a saturation of the anisotropic exponents?

Eq. (99) can be rewritten in terms of a new projection operatorP̂, which projects a vectorX�(r) on its
divergence-free part:

�tC
� =−P̂[K������C

�] + ��2C� + A� ,
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where

P̂X�(r) ≡ X�(r)− ��
∫

dyG(r − y)��X
�(y) .

We shall solve this integro-differential equation by first turning it into a PDE using the Laplacian operator,
and then turning it into a set of decoupled ODEs using theSO(3) decomposition. As in the linear pressure
model, the non-locality of the projection operator can be removed by considering a differential version
of the operator:

�2P̂T �(r)= �2T �(r)− ����T
�(r) .

In stationary condition�tC
� = 0, and therefore the differential form of the toy model is given by

�2P̂[K��(r)����C
�(r)] = �2K��(r)����C

�(r)− ����K
��(r)����C

�(r)

= ��2�2C�(r)+ �2A�(r) ,

��C
�(r)= 0 . (100)

We have reached a linear PDE of order 4. This PDE will be solved by exploiting its symmetries, i.e.,
isotropy and parity conservation, as demonstrated in the next subsection.

Eq. (100) and the incompressibility condition ofC�(r) are both isotropic and parity conserving. There-
fore, if we expandC�(r) in terms of spherical vectors with a definite behavior under rotations and under
reflections, we recover a set of decoupled ODE’s for their coefficients.

For each sector(j,m), j >0 of SO(3) we have three spherical vectors:

B�
1jm(r̂) ≡ r−j−1r��jm(r) ,

B�
2jm(r̂) ≡ r−j+1���jm(r) ,

B�
3jm(r̂) ≡ r−j ε���r����jm(r) .

Here�jm(r)= rjYjm(r̂), and see[27] for further details. The first two spherical vectors have a different
parity than the third vector, hence the equations for their coefficients are decoupled from the equation for
the third coefficient. In the following, we shall consider the equations for the first two coefficients only,
as they have a richer structure and larger resemblance to the linear pressure model. Finally, note that the
isotropic sector, i.e.,j =0, is identically zero. To see why, note that in this special sector there is only one
spherical vector,B�

100(r̂) ≡ r−1r�. Hence the isotropic part ofC�(r) is given byc(r)r−1r�, c(r) being
some scalar function ofr. But then the incompressibility condition (99) implies thatc(r) ∼ r−2, which
has a UV divergence. We therefore conclude thatc(r)= 0 and restrict the calculation toj >0.

By expandingC�(r) in terms of the spherical vectorsB1jm,B2jm, we obtain a set of ODEs (decoupled
in the(j,m) labels) for the scalar functions that are the coefficients of these vectors in the expansion. The
equations for these coefficients can thus be written in terms of matrices and column vectors. To simplify
the calculations, we find the matrix forms of the Kraichnan operator and of the Laplacian of the projection
operator separately, and only then combine the two results to one.
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5.3.2. The matrix form of the operators and the solution of the toy model
In this subsection we derive the matrix form of the Kraichnan operator and of the Laplacian of the pro-

jection operator in eachj sector. To obtain the matrix of the Kraichnan operator in the basisofB1jm,B2jm,
we expandC�(r),

C�(r)= c1(r)B
�
1jm(r̂)+ c2(r)B

�
2jm(r̂) ,

in Appendix E we show how to find the operator onC�(r) in a matrix form which results in the final
equation forc1(r) andc2(r):

rεM4

(
c
(4)
1

c
(4)
2

)
+ rε−1M3

(
c
(3)
1

c
(3)
2

)
+ rε−2M2

(
c
(2)
1

c
(2)
2

)

+ rε−3M1

(
c
(1)
1

c
(1)
2

)
+ rε−4M0

(
c1
c2

)
=
(

�1
�2

)
. (101)

In addition, the incompressibility constraint��C
�(r)=0 can also be expressed as a relation betweenc1(r)

andc2(r):

c′1+ 2
c1

r
+ jc′2− j (j − 1)

c2

r
= 0 . (102)

This constraint has to be taken into account when solving Eq. (101). The solution of Eq. (101) is some-
what tricky due to the additional constraint (102). Seemingly, the two unknownsc1(r), c2(r) are over
determined by the three equations (101,102), yet this is not the case for the two equations (101) are
not independent. To see that this is the case and find the solution, it is advantageous to work in the
new basis

d1= c1+ jc2, d2=−2c1+ j (j − 1)c2 .

In this basis the incompressibility constraint becomes very simple:d2 = rd ′1, allowing us to expressd2
and its derivatives in terms ofd1. To do that in the framework of the matrix notation, we define the
transformation matrixU:

U ≡
(

1 j

−2 j (j − 1)

)
, U−1= 1

j (j + 1)

(
j (j − 1) −j

2 1

)
,

so that,
(
d1
d2

)
=U

(
c1
c2

)
. The equations ofdi(r) are the same as the equations forci(r), with the matrices

Mi replaced byNi ≡ UMiU
−1, and the sources�i replaced by(

�∗1
�∗2

)
=U

(
�1
�2

)
.

Note that a divergence-free forcingA�(r) will cause�∗1(r), �∗2(r) to be related to each other in the
same way thatd1(r), d2(r) are related to each other, i.e.,�∗2 = r(�∗1)

′. Next, we perform the following
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replacements:

d2= rd
(1)
1 , d

(1)
2 = rd

(2)
1 + d

(1)
1 , d

(2)
2 = rd

(3)
1 + 2d(2)1 ,

d
(3)
2 = rd

(4)
1 + 3d(3)1 , d

(4)
2 = rd

(5)
1 + 4d(3)1 .

We get an equation written entirely in terms of the functiond1(r) and its derivatives

rε(rV 5d
(5)
1 + V4d

(4)
1 + r−1V3d

(3)
1 + r−2V2d

(2)
1 + r−3V1d

(1)
1 + r−4V0d1)=

(
�∗1
�∗2

)
, (103)

whereVi are two-dimensional vectors given by

V5 ≡ N4

(
0
1

)
, V4 ≡ N4

(
1
4

)
+N3

(
0
1

)
, V3 ≡ N3

(
1
3

)
+N2

(
0
1

)
,

V2 ≡ N2

(
1
2

)
+N1

(
0
1

)
, V1 ≡ N1

(
1
1

)
+N0

(
0
1

)
, V0 ≡ N0

(
1
0

)
.

Their explicit values can be found in[32]. The Eq. (103) are for a column vector, and can be regarded
as two scalar differential equations that we refer to as the “upper” and the “lower”. The upper ODE is
of the fourth order, while the lower ODE is of fifth order. Unsurprisingly, the lower equation is the first
derivative of the upper equation, provided thatA�(r) is divergence free. Hence the two equations are
dependent, and we restrict the attention to the upper equation. To simplify it, we divide both sides by
Drε, replaced1(r) by �(r) and define the RHS to be the functionS(r):

S(r) ≡ D−1r−ε�∗1(r) . (104)

After doing so, we reach the following equation:

�(4) + a3
�(3)

r
+ a2

�(2)

r2
+ a1

�(1)

r3
+ a0

�

r4
= S(r) . (105)

Its homogeneous solution is easily found once we substitute,�(r)=�0r
�. The scaling exponents are the

roots of the polynomial,

P(�)= �(�− 1)(�− 2)(�− 3)+ a3�(�− 1)(�− 2)+ a2�(�− 1)+ a1�+ a0 .

The polynomial roots are found to be real and non-degenerate. Two of them are positive while the other
two are negative. They are given by

�j (i)=−1
2 − 1

2 ε± 1
2

√
A(j, ε)±√B(j, ε), i = 1,2,3,4 , (106)

where

A(j, ε) ≡ ε2+ εj2+ εj − 2ε+ 5+ 4j + 4j2
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Fig. 1. Scaling exponents of the first fewjs as a function ofε. Top panels show: set 1 (left); set 2 (right). Bottom panel: set 3
(left); set 4 (right).

and

B(j, ε) ≡ −8ε2j − 7ε2j2+ 16ε2+ 2ε2j3+ ε2j4− 8εj2− 8εj − 32ε+ 16+ 64j + 64j2 .

In the limit ε → 0 the roots become, in decreasing order:

�j (1)= j + 1, �j (2)= j − 1, �j (3)=−j, �j (4)=−j − 2 ,

Fig. 1displays the first few exponents as a function ofε. We note that the spectrum has no sign of saturation
asj increases. Before we discuss the meaning of this observation we will make sure that these solutions are
physically relevant and participate in the full (exact) solution including boundary conditions. The general
solution of Eq. (105) is traditionally given as the sum of a special solution of the non-homogeneous
equation plus a linear combination of the zero modes. However when attempting to match the solution
to the boundary conditions it is convenient to represent it as

�(r)=
4∑

i=1

r�j (i)

(�j (i)− �j (1)) . . . (�j (i)− �j (4))︸ ︷︷ ︸
all differentroots

∫ r

mi

dx x3−�j (i) S(x) , (107)

where the free parameters of the solution are the four constantsmi . Indeed a change inmi is equivalent
to adding to the solution a term proportional tor�j (i). In the next subsection, we find the values ofmi to
match the boundary conditions, and discuss the properties of the solution.
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5.3.3. Boundary conditions and inertial-range behavior
From Eq. (107) it is clear that the only values ofmi that guarantee that the solution remains finite as

r → 0 and that it decays asr →∞ arem1=m2=+∞, m3=m4= 0:

�(r)= − r�j (1)

(�j (1)− �j (2))(�j (1)− �j (3))(�j (1)− �j (4))

∫ ∞

r

dx x3−�j (1)S(x)

− r�j (2)

(�j (2)− �j (1))(�j (2)− �j (3))(�j (2)− �j (4))

∫ ∞

r

dx x3−�j (2)S(x)

+ r�j (3)

(�j (3)− �j (1))(�j (3)− �j (2))(�j (3)− �j (4))

∫ r

0
dx x3−�j (3)S(x)

+ r�j (4)

(�j (4)− �j (1))(�j (4)− �j (2))(�j (4)− �j (3))

∫ r

0
dx x3−�j (4)S(x) . (108)

To understand the asymptotics of this solution we find from Eq. (104) that forx>L, S(x) has a leading
term which goes likexj−1−ε, whereas forx?L, S(x) decays rapidly. It is now straightforward to prove
that forr>L, the�j (3), �j (4) terms scale likerj+3−ε, the�j (2) term scales liker�j (2) and the�j (1) term
scales liker�j (1) for values ofε for which�j (1)< j + 3− ε and likerj+3−ε otherwise. In addition, it is
easy to see that forr?L, �(r) exhibits an algebraic decay: the�j (1), �j (2) terms decay rapidly due to the
decay ofS(x) whereas the�j (3), �j (4) terms decay algebraically liker�i , respectively. The asymptotics
of the full solution are thus given by

�(r) ∼
{
r�j (2), r>L ,

r�j (3), r?L .
(109)

The obvious conclusion is that there is no saturation in the anisotropic scaling exponents asj increases.
The lack of contradiction with the existence of an integral over all space has two aspects. The main one
is simple and obvious. The integro-differential (99) forC� has a differential version (100). Solving the
differential version we are unaffected by any considerations of convergence of integrals and therefore the
solution may contain exponents that increase withj without limit. Nevertheless, the full solution (108)
exhibits a cross over atL: it increases in the inertial ranger>L and decays forr?L. Thus plugging it
back to the integro-differential equation we are guaranteed that no divergence occurs.

The question why the cross-over lengthL does not spoil the scale invariance in the inertial range still
remains. The answer is found in differential form of the equation of motion, given by Eq. (100). From
this equation we find that the integrand is a Green’s function times a Laplacian of a tensor. By definition
such an integral localizes, i.e. it is fully determined by the value of the tensor at the external vectorr. In
the language of Eq. (92)A( y)= ∇2B( y)!

The second and less obvious aspect is that the window of locality widens up withj. This is due to the
cancellations in the angular integration of the anisotropic solutions that are due to the orthogonality of
theYjm(r̂) and their generalizationsB�

qjm(r̂). To demonstrate this, consider again the simple integral (92)
and assume thatC(y) belongs to(j,m) sector, i.e.C(y) = a(y)Yjm(ŷ). For y?r, we may expand the
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Green function inr/y:

G(r − y)=− 1

4�|r − y| = −
1

4�y

∞∑
n=0

an

[(
r

y

)2

− 2
r · ŷ
y

]n
.

Herean are Taylor coefficients. Obviously, the dangerous terms for the infrared convergence are those
with low values ofn. However, all these terms will vanish forn< j due to the angular integration against
Yjm(ŷ). The reason is that all these terms are of the formrn1yn2(r · ŷ)n3 with n3<j . The angular part
here has projections onlyYj ′m′ with j ′�k3<j . The first term to contribute comes whenn = j , and is
proportional to the amplitude integral

∫∞
r

dy y2ajm(y)y
−j−1. For a power lawajm(y) ∼ y� this implies

locality for�<j−2, instead of�<−2 in the isotropic sector. The lower bound of the window of locality
is also extended, and a similar analysis fory>r leads to�> − j − 3. For the toy model this translates
to the window of locality

−j − ε< �j (i)< j + 1− ε .

From the previous analysis we find that the leading power law of the full solution in the inertial range
is r�j (2), which is inside this “extended” window of locality. Nevertheless, the subleading powerr�j (1)

originating from the first term in Eq. (108) is above this window, and its presence in the solution can be
explained only using the first mechanism.

We will see when we turn back to the linear pressure model that both these mechanisms operate there
as well, leading again to a lack of saturation in the exponents.

5.3.4. Solving the linear pressure model
We now return to the linear pressure model. The methods used to solve it follow very closely those

developed for the toy model and therefore will not be described in full detail. Contrary to the toy model
where we can have the full solution, in the present case we can solve only for the zero modes. These are
scale-invariant solutions that solve an equation containing an integral. Their exponent must therefore lie
within the “extended” (j dependent) window of locality. Finally, one can argue that these zero modes are
a part of the full solution that decays forr?L, and therefore solve the original equation as well. We start
from Eqs. (97) and (98). In the appendix of[32] Eq. (98) was brought to the form

T ��(r)=−1

2
P̂LK

������C
��(r)− 1

2

12εD

(ε− 3)(ε− 5)

∫
dyG(y)yε−2�2C��(r − y) , (110)

which is true for everyε �= 1. Theε = 1 case will not be treated here explicitly. Nevertheless, in[32] it
was argued that that the results forε= 1 can be deduced from theε �= 1 results by continuity.

Looking at Eq. (110), we note that whenε=2, the integral on the RHS of the above equation trivializes
to a local termC��(r). In this limiting case the model can be fully solved utilizing the same machinery
used in the previous section. The solution can then be used to check the zero modes computed below for
arbitrary values ofε.

To proceed, we substitute Eq. (110) into Eq. (97), noting that the projectorP̂R leaves the non-trivial
integral in (110) invariant since it is divergence-free in both indices. Setting�tC

��(r, t) = 0 in the
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stationary case, we arrive to following equation:

0= − [P̂RP̂LK
������C

��](r)
− 12εD

(ε− 3)(ε− 5)

∫
dyG(y)yε−2�2C��(r − y)+ 2��2C��(r)+ A��(r) . (111)

As in the toy model, we apply two Laplacians to the above equation in order to get rid of the integrals of
the projection operators, and obtain

0= − �4[P̂RP̂LK
������C

��](r)
− 12εD

(ε− 3)(ε− 5)

∫
dyG(y)yε−2�6C��(r − y)+ 2��6C��(r)+ �4A��(r) . (112)

Here and in the sequel, the operator�2n should be interpreted as(�2)n. We now seek the homogeneous
stationary solutions ofC��(r) in the inertial range (zero modes). These satisfy the equations obtained by
neglecting the dissipation, and setting the forcing and time derivative to zero:

0= �4K������C
��(r)+ ��������K

������C
��(r)

− �����
2K������C

��(r)− �����
2K������C

��(r)

+ 12εD

(ε− 3)(ε− 5)

∫
dyG(y)yε−2�6C��(r − y) . (113)

Let us now define the RHS of the above equation as the “zero-mode operator”Ô(ε), and write the zero-
mode equation compactly as

0= [Ô(ε)C��](r) .

The solutions of this problem is obtained as before by expandingC��(r) in a basis that diagonalizesÔ(ε).
Full detail of this procedure are available in[32]. We turn now to discuss the results. InFig. 2we show
the leading scaling exponents of the linear pressure model forj = 0,2,4,6,8,10. FromFig. 2, we see
that in the isotropic sector and in thej = 2 sector, the leading exponent is�(2)j = 0, corresponding to

the trivial C��(r) = constsolution. These zero modes will not contribute to the second-order structure
function, which is given by

S��(r)= 2[C��(r)− C��(0)] ,

and so we have to consider the zero mode with the consecutive exponent. In the isotropic sector, this
exponent is exactly�(2)0 = 2− ε, as can be proven by passing to Fourier space. This special solution is
a finger-print of the existence of a constant energy flux in this model. Returning to the main question of
this subsection, we see that no saturation of the anisotropic exponents occurs since the leading exponent
in everyj >2 sector is�(2)j % j − 2. These exponents are within the window of locality of Eq. (111)

which is given by−j − 3< �(2)j < j − ε. However, the next-to-leading exponents (which are the leading
ones in the structure function forj = 0,2), are already out of this window, and their relevance has to be
discussed. In[32] it was proposed that the same mechanism that works in the toy model also operates
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Fig. 2. Leading scaling exponents for the first fewjs. The dashed line indicates the upper bound of the window of locality.

here, and that all these higher exponents can be found in the full solution. To understand this, let us write
a model equation for the correlation function in the spirit of Eq. (92):

D̂C(r)+
∫

dyK(r − y)C(y)= F(r) (114)

with K being some kernel, and̂D being some local differential operator. In view of Eq. (111), the
differential operatorD̂ should be regarded as the Kraichnan operator, and the integral term should be
taken for all integral terms in the equation, including integrals due to the projection operators. These
integrals create a window of locality that we denote by�low < �< �hi. Any pure scaling solutionC(r) ∼
r� with � outside the window of locality will diverge and hence will not solve the homogeneous part of
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Eq. (114). Nevertheless, we will now demonstrate how this zero mode can be a part of a full solution
without breaking scale invariance. For this we act with a Laplacian on both sides of Eq. (114), in order
to get rid of the projection operators integrals. Of course, as in the linear pressure model, this will not
eliminate all integral terms, and thus we can write the resultant equation as

�2D̂C(r)+
∫

dyK(r − y)�2C(y)= �2F(r) . (115)

The main assumption, which was proven analytically in the simple case of the toy model, is that the above
equation has a solution which is finite for allr, and decays forr?L. Let us now consider the zero modes
of Eq. (115); their exponents have to be within the “shifted” window of locality�low + 2< �< �hi + 2.
Suppose now thatr� with �hi < �< �hi + 2 is such a solution, which is therefore part of the full solution
of Eq. (115). We now claim that this solution also solves the original equation Eq. (114), hence allowing
the existence of scaling exponents outside of its window of locality. To see that, we first notice that since
the full solution decays forr?L, then all integrals in Eq. (114) converge, and are therefore well defined.
All that is left to show is that the equation is indeed solved byC(r). But this is a trivial consequence of
the uniqueness of the solution for Laplace equation with zero at infinity boundary conditions. Indeed, if
we denote the integral term in Eq. (114) by

I (r)=
∫

dyK(r − y)C(y) ,

then from Eq. (115) we have

�2I (r)= �2[F(r)− D̂C(r)] ,

and since bothI (r) andF(r)−D̂C(r) decay asr →∞, then they must be equal. Of course, no breaking of
scale invariance occurs because the equation is satisfied andF(r)− D̂C(r) is a sum of an inhomogeneous
solution and power laws.

Returning to the linear pressure model, we have shown that not only the first, leading exponents in every
sector are legitimate, but also the next few exponents. These exponents are inside the shifted window of
locality of the “Laplaced” equation (113), which is given by−j + 1< �<j + 4− ε. At this point, we
may ask whether this is also the case for the other exponents, which are outside this shifted window of
locality. In light of the above discussion, it is clear that all of them may be part of the full solution, for
we can always differentiate Eq. (111) sufficient number of times, thus shifting the window of locality
to include any of these exponents. However, this procedure is unnecessary once we have written the
prefactorA(�; j, ε) as an infinite sum of poles in�. In that case the equation is defined for all values of�
except for a discrete set of poles, enabling us to look for exponents as high as we wish.

5.3.5. Summary and conclusions
The main question raised and answered in this subsection is whether the existence of the pressure terms

necessarily leads to a saturation of the scaling exponents associated with the anisotropic sectors. Such
terms involve integrals over all space, and seem to rule out the existence of an unbounded spectrum. We
have discussed a mechanism that allows an unbounded spectrum without spoiling the convergence of
the pressure integrals. The mechanism is demonstrated fully in the context of the simple toy model, and
it is proposed that it also operates in the case of the linear pressure model. The mechanism is based on
two fundamental observations. The first one is that the window of locality widens up linearly inj due
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to the angular integration. The second, and more important, is that a scaling solution with an unbounded
spectrum can existas a part of a full solution, which decays at infinity. Indeed pure scaling solutions
cannot themselves solve the zero-mode equation if their scaling exponent is out of the window of locality.
However, the zero modes are always part of the full solution which decays to zero oncer?L, and we
have shown that if such a solution solves a differential version of the full equation, it must also solve the
original equation. Therefore by differentiating the full equation sufficiently many times, we can always
reach a differential equation with a window of locality as high as we wish. In that equation we can
find zero-mode solutions with arbitrarily high exponents (note that in the toy model, it was sufficient to
differentiate once to get rid of all integrals, thus obtaining an “infinitely wide” window of locality). But
since these zero modes are part of a full solution that decays at infinity, then this solution is also valid
for the original equation, hence showing that in the full solution there can be power laws with arbitrarily
high exponents. Finally, we want to comment about the relevance of these calculations to Navier–Stokes
turbulence. If we substitute blindlyε=4/3 in our results, we predict the exponents 2/3, 1.25226, 2.01922,
4.04843, 6.06860 and 8.08337 forj = 0,2,4,6,8 and 10, respectively. It would be tempting to propose
that similar numbers may be expected for Navier–Stokes flows with weak anisotropy, and indeed forj=0
and 2 this is not too far from the truth. We return to this issue after analyzing the Navier–Stokes case in
next section. The closeness of the linear pressure Model to Navier–Stokes equations has also been used
in [135] to propose a closure scheme for the non-linear problem.

5.4. A closure calculation of anisotropic exponents for Navier–Stokes turbulence

In this subsection we start from the Navier–Stokes equations, and write down an approximate equation
satisfied by the second-order correlation function, in a closure approximation (renormalized perturbation
theory in 1-loop order)[136,137]. This equation is non-linear. For a weakly anisotropic system we follow
[137] in linearizing the equation, to define a linear operator over the space of the anisotropic components
of the second-order correlation function. The solution is then a combination of forced solutions and
“zero modes” which are eigenfunctions of eigenvalue zero of the linear operator.

5.4.1. Model equations for weak anisotropy in the closure approximation
It is customary to discuss the closure equations ink, t representation. The Fourier transform of the

velocity fieldu(r, t) is defined by

u(k, t) ≡
∫

dr exp[−i(r · k)]u(x, t) .

The Navier–Stokes equations for an incompressible fluid then read[
�

�t
+ �k2

]
u�(k, t)= i

2
����(k)

∫
d3qd3p

(2�)3
�(k+ q+ p)u∗�(q, t)u∗�(p, t) .

The interaction amplitude����(k) is defined by����(k)=−[P ��(k)k� + P ��(k)k�], with the transverse
projection operatorP �� defined asP �� ≡ ���− k�k�/k2. The statistical object that is the concern of this
subsection is the second-order (tensor) correlation functionF(k, t),

(2�)3F̂ ��(k, t)�(k− q) ≡ 〈u�(k, t)u∗�(q, t)〉 .
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In stationary conditions this object is time independent. Our aim is to find itsk-dependence, especially
in the anisotropic sectors.

It is well known that there is no closed-form theory for the second-order simultaneous correlation
function. We therefore need to resort to standard closure approximations that lead to model equations.
Such a closure leads to approximate equations of motion of the form

�F̂ ��(k, t)

2�t
= I ��(k, t)− �k2F̂ ��(k, t) , (116)

where

I ��(k)=
∫

d3q d3p

(2�)3
�(k+ p+ q)���(k, q, p) . (117)

In this equation���(k, q, p)= 1
2[���(k, q, p)+���(k, q, p)], and

���(k, q, p)=�(k, q, p)����(k)[���′�′(q)F̂ ��′(p)�
′�(k)

+ ���′�′(p)F̂ ��′(q)A�′�(k)+ ���′�′(k)F̂ ��′(q)A��′(p)] . (118)

In stationary conditions and fork in the inertial range we need to solve the integral equationI ��(k)= 0.
The process leading to these equations is long; one starts with the Dyson–Wyld perturbation theory, and

truncates (without justification) at the first-loop order. In addition, one asserts that the time dependence
of the response function and the correlation functions are the same. Finally, one assumes that the time
correlation functions decay in time in a prescribed manner. This is the origin of the “triad interaction
time” �(k, q, p). If one assumes that all the correlation functions involved decay exponentially (i.e. like
exp(−�k|t |), then

�(k, q, p)= 1

�k + �q+ �p
. (119)

For Gaussian decay, i.e. like exp[−(�kt)
2/2],

�(k, q, p)= 1√
�2

k + �2
q + �2

p

. (120)

All these approximations are uncontrolled. Nevertheless, this type of closure is known to give roughly
correct estimates of scaling exponents and even of coefficients in the isotropic sector.

Eq. (117) poses a non-linear integral equation which is closed once�k is modeled. One may use the
estimate�k ∼ kUk whereUk is the typical velocity amplitude on the inverse scale ofk, which is evaluated
asU2

k ∼ k3F̂ ��(k).

�k = C�k
5/2
√
F̂ ��(k) . (121)

In isotropic turbulence Eqs. (117) and (121) have an exact solution with K41 scaling exponents,

F̂
��
0 (k)= P ��(k)F (k), F (k)= Cε2/3k−11/3, �k = C̃�ε

1/3k2/3 . (122)
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Note that the scaling exponents ink-representation, denoted as
̃, have ad-dependent difference from

their numerical value inr-representation. In three dimensions
̃
(2)=
(2)+3, and the exponent 2/3 turns to

11/3 in Eq. (122). For weak anisotropic turbulence Eq. (117) will pose alinearproblem for the anisotropic
components which depends on this isotropic solution.

5.4.2. Closure with weak anisotropy
In weakly anisotropic turbulence one has to consider a small anisotropic correctionf ��(k) to the

fundamental isotropic background

F̂ ��(k)= F̂
��
0 (k)+ f ��(k) .

The first term vanishes with solution (122). Linearizing the integral equation with respect to the anisotropic
correction leads to

I ��(k)=
∫

d3q d3p

(2�)3
�(k+ p+ q)[S����(k, q, p)f ��(k)+ 2T ����(k, q, p)f ��(q)] = 0 ,

S����(k, q, p) ≡ ����(k, q, p)

�F̂ ��(k)
, T ����(k, q, p) ≡ ����(k, q, p)

�F̂ ��(q)
. (123)

We reiterate that the functional derivatives in Eq. (123) are calculated in the isotropic ensemble. In
computing these derivatives we should account also for the implicit dependence of�(k, q, p) on the
correlation function through Eq. (121). We can rewrite Eq. (123) in a way that brings out explicitly the
linear integral operator̂L,

L̂| f〉 ≡
∫

d3q

(2�)3
L����(k, q)f ��(q)= 0 , (124)

where the kernel of the operator is

L����(k, q) ≡ �(k− q)

∫
d3p

(2�)3
S����(k, p,−k− p)+ 2T ����(k, q,−k− q) . (125)

5.4.3. Symmetry properties of the linear operator
The first observation to make is that the linear operator is invariant under all rotations. Accordingly,

we can block diagonalize it by expanding the anisotropic perturbation in the irreducible representations
of theSO(3) symmetry group. These have principal indicesj with an integerj going from 0 to∞. The
zeroth component is the isotropic sector. Correspondingly, the integral equation takes the form

I ��(k)= I
��
0 (k)+

∞∑
j=1

I
��
j (k)= 0 . (126)

The block diagonalization implies that eachj -block provides an independent set of equations (for every
value ofk): I ��

j (k) = 0. The first term of (126) vanishes with solution (122). For all higher values ofj
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we need to solve the corresponding equation

L̂| fj 〉 = 0 . (127)

We can block diagonalize further by exploiting additional symmetries of the linear operator. In all dis-
cussion we assume that the turbulent flow has zero helicity. Correspondingly, all the correlation functions
are invariant under the inversion ofk. Consequently, there are no oddj components, and we can write

f ��(k)=
∞∑

j=2,4,...

f
��
j (k) .

We also note that in generalu(−k) = u∗(k). Accordingly, the correlation functions are real. From this
fact and the definition it follows that the correlation functions are symmetric to index permutation,
F̂

��
0 (k) = F̂

��
0 (k) andf

��
j (k) = f

��
j (k). As a result the linear operator is invariant to permuting the

first (�, �) and separately the second (�, �) pairs of indices. In addition, the operator is symmetric to
k → −k together withq→ −q. This follows from the inversion symmetry and from the appearance of
products of two interaction amplitudes (which are antisymmetric under the inversion of all wavevectors
by themselves). Finally, the kernel is a homogeneous function of the wavevectors, meaning that in every
block we can expand in terms of basis functions that have a definite scaling behavior, being proportional
to k−
̃.

5.4.4. SO(3) decomposition
As a result of the symmetry properties the operatorL̂ is block diagonalized by tensors that have the

following properties:

• They belong to a definite sector(j,m) of theSO(3) group.
• They have a definite scaling behavior.
• They are either symmetric or antisymmetric under permutations of indices.
• They are either even or odd ink.

We have already explicitly presented the tensors involved for the case of passive vector advection. Here
we only quote the final results translated intok space. In every sector(j,m) of the rotation group with
j >1, one can find 9 independent tensorsX��(k) that scale likek−x . They are given byk−xB̃��

j,jm(k̂),

where the indexj runs from 1 to 9, enumerating the different spherical tensors. The unit vectork̂ ≡ k/k.
These nine tensors can be further subdivided into four subsets exactly like the real-space decomposition
of Section 4.2.2.2:

• SubsetI of 4 symmetric tensors with(−)j parity.
• SubsetII of 2 symmetric tensors with(−)j+1 parity.
• SubsetIII of 2 antisymmetric tensors with(−)j+1 parity.
• SubsetIV of 1 antisymmetric tensor with(−)j parity.

Due to the diagonalization of̂L by these subsets, the equation for the zero modes foliates, and we can
compute the zero modes in each subset separately. In this subsection, we choose to focus on subset I,
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which has the richest structure. The four tensors in this subset are given here by

B̃
��
1,jm(k̂)= k−j−2k�k��jm(k) ,

B̃
��
2,jm(k̂)= k−j [k��� + k���]�jm(k) ,

B̃
��
3,jm(k̂)= k−j����jm(k) ,

B̃
��
4,jm(k̂)= k−j+2�����jm(k) , (128)

where�jm(k) are the standard spherical harmonics.
The last property to employ is the incompressibility of the target functionf ��(k). Examining basis

(128) we note that we can find two linear combinations that are transverse tok and two linear combinations
that are longitudinal ink. We need only the former, which have the form

B
��
1,jm(k̂)= k−jP ��(k)�jm(k) ,

B
��
2,jm(k̂)= k−j [k2���� − (j − 1)(k��� + k���)+ j (j − 1)���]�jm(k) . (129)

Using this basis we can now expand the target function as

f
��
j (k)= k−
̃

(2)
j

[
c1B

��
1,jm(k̂)+ c2B

��
2,jm(k̂)

]
. (130)

5.4.5. Calculation of the scaling exponents
Substituting Eq. (130) into Eq. (127) we find

L̂q−
̃
(2)
j |B1,jm〉c1+ L̂q−
̃

(2)
j |B2,jm〉c2= 0 . (131)

Projecting this equation on the two function of basis (129) we obtain for the matrixLi,l(j, 
̃
(2)
j ) ≡

〈Bi,jm|L̂q−
̃
(2)
j |Bl,jm〉 the form

Li,l(j, 
̃
(2)
j )=

∫
d3q

(2�)3
dk̂B��

i,jm(k̂)L
����(k, q)q−
̃

(2)
j B

��
l,jm(q̂) . (132)

Here we have full integration with respect toq, but only angular integration with respect tok. Thus
the matrix depends onk as a power, but we are not interested in this dependence since we demand the
solvability condition

detLi,l(j, 
̃
(2)
j )= 0 . (133)

It is important to stress that despite the explicitm dependence of the basis functions, the matrix obtained
in this way has nom dependence. In the calculation below we can therefore put, without loss of generality,
m= 0. This is like having cylindrical symmetry with a symmetry axis in the direction of the unit vector
n̂. In this case we can write the matrixBi,j (k̂) (in the vector space�, �= x, y, z) as

B
��
i,j (k̂)= k−j B̂��

i,j,k(k
jPj (k̂ · n̂)) , (134)
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whereB̂
��
i,j,k are matrix operators, acting on wave vectork:

B̂
��
1,j,k ≡ ��� − k�k�

k2
,

B̂
��
2,j,k ≡

k2�2

�k��k�
− (j − 1)

(
k��

�k�
+ k��

�k�
− j���

)
, (135)

andPj (x)denotej th-order Legendre polynomials. The technical details of the calculations were presented
in [137]. Here we present and discuss the results.

5.4.6. Results and concluding remarks

The determinants det[Li,l(j, 
̃
(2)
j ] were computed as functions of the scaling exponents
̃

(2)
j in every

j -sector separately, and the scaling exponent was determined from the zero crossing. The procedure is

exemplified inFig. 3 for the isotropic sectorj = 0. We expect for this sector
̃
(2)
0 = 11/3, in accordance

with 
(2)0 = 2/3. Indeed, for both decay models, i.e. the exponential decay (119), shown in dark line,
and the Gaussian decay (120) shown in light line, the zero crossing occurs at the same point, which in
the inset can be read as 3.6667. For the higherj -sectors the agreement between the exponential and
Gaussian models is not as perfect, indicating that the procedure is not exact. InFig. 4 we present the

determinant and zero crossings forj=2. From the inset we can read the exponents
̃
(2)
2 =4.351 and 4.366

for the exponential and Gaussian models, respectively. This is in correspondence with
(2)2 = 1.351 and
1.366, respectively. These numbers are in excellent correspondence with the experimental measurements
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(2)2 ≈ 1.36− 1.37.

reported in[13,33], cf. the next section. The results forj = 4 are presented inFig. 5. Here the zero

crossing, as seen in the inset, yields very close results for
̃
(2)
4 between the exponential and Gaussian

decay models, i.e.̃

(2)
4 ≈ 4.99. Note that this result is very close to the boundary of locality as discussed

in [137]. Nevertheless, the zero crossing is still easily resolved by the numerics, with the prediction that

(2)4 ≈ 1.99. The simulation estimate of this number in[40] was 1.7± 0.1. We note that while the result


(2)4 ≈ 1.99 is not within the error bars of the simulational estimate, it is very possible that the closeness of
the exponent to the boundary of the window of locality gives rise to very slow convergence to asymptotic
scaling. We therefore have to reserve judgment about the agreement with simulations until larger scaling
ranges were available.

Similar results are obtained forj = 6, seeFig. 6. Also this case exhibits zero crossing close to the

boundary of locality, with̃

(2)
6 ≈ 6.98. Again we find close correspondence between the exponential

and Gaussian models. In terms of
(2) this means
(2)6 ≈ 3.98. This number appears higher than the

simulational result from[40], which estimated
(2)6 ≈ 3.3± 0.3. We note however that forj = 6 the
log–log plots measured in DNS[40] possess a short scaling range.

Interestingly enough, the set of exponents
(2)j = 2/3, 1.36, 1.99 and 3.98 forj = 0, 2, 4 and 6, re-

spectively, are in close agreement with the numbers obtained for the linear pressure model,�(2)j = 2/3,
1.25226, 2.01922, 4.04843, forj = 0,2,4 and 6, respectively. We reiterate at this point that the latter
set is exact for the linear pressure model, whereas the former set is obtained within the closure approx-
imation. In fact, the close correspondence is not so surprising since the linearization of Navier–Stokes
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equations for small anisotropy results in a linear operator which is very close to the one that exists
naturally in the linear pressure model. Numerical results[18,40,138]obtained at moderateReand with
strong anisotropies show a small disagreement with the numbers calculated in the closure approximation.
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We do not expect a much more precise theoretical evaluation of these exponents before numerical and
experimental data at higherRe are obtained and the intermittency problem in the isotropic sector is
fully settled.

6. Analysis of experimental data

The major difficulty in applying theSO(3) decomposition to experimental data lies in the fact that
one never has the whole fieldu(x). We thus cannot project the statistical objects onto chosen basis
functionsBqjm and simply integrate out all other contributions. Rather, we need to extract the desired
information laboriously by fitting partially resolved data, or to measure quantities that do not have pro-
jections on the isotropic sector, to see right away the anisotropic contributions. We begin with the first
approach.

6.1. Anisotropic contribution to the statistics of the atmospheric boundary layer

The atmospheric boundary layer offers a natural laboratory of turbulence that is unique in offering
extremely highRenumbers. Students of turbulence interested in the scaling properties that are expected
to be universal in the limitRe → ∞ are thus attracted to atmospheric measurements. On the other
hand, the boundary layer suffers from strong inhomogeneity (explicit dependence of the mean velocity
on the height) which leads to strong anisotropies such that the vertical and the horizontal directions are
quite distinguishable. In addition, one may expect the boundary layer to exhibit large-scale quasi two-
dimensional eddys whose typical decay times and statistics may differ significantly from the generic three-
dimensional case. The aim of this section is to review systematic methods of data analysis that attempt
to resolve such difficulties, leading to a useful extraction of the universal, three-dimensional aspects of
turbulence.

Obviously, to isolate tensorial components belonging to other than isotropic sectors one needs to collect
data from more than one vector component of the velocity field. Havingtwoprobes is actually sufficient
to read surprisingly rich information about anisotropic turbulence. In the experiments discussed in this
subsection two types of geometry were employed, one consisting of two probes at the same height above
the ground and the other with the two probes separated vertically. In both cases the inter-probe separation
is orthogonal to the mean wind.

6.1.1. Experiments, data sets and the extraction of structure functions
The results presented in this subsection are based on two experimental setups[10,13,33], which are

denoted throughout as I and II, respectively. In both setups the data were acquired over the salt flats in
Utah with a long fetch. In set I the data were acquired simultaneously from two single hot wire probes
at a height of 6 m above the ground, with a horizontal separation of 55 cm, nominally orthogonal to
the mean wind. The Taylor microscale Reynolds number was about 10,000. Set II was acquired from
an array of three cross-wires, arrangedaboveeach other at heights 11, 27 and 54 cm respectively. The
Taylor microscale Reynolds numbers in this set were 900, 1400 and 2100, respectively.Table 1lists a few
relevant facts about the data records analyzed here. The various symbols have the following meanings:
U is the local mean velocity,u′ the root-mean-square velocity,ε̄ the energy dissipation rate obtained by
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Table 1
Data sets I (first line) and II (second-fourth lines)

Height (m) U (m s−1) u′ (m s−1) 102〈ε̄〉 (m2 s−3) 	 (mm) � (cm) R� fs , per channel, Hz No. of samples

6 4.1 1.08 1.1 0.75 15 10,500 10,000 4× 107

0.11 2.7 0.47 6.6 0.47 2.8 900 5000 8× 106

0.27 3.1 0.48 2.8 0.6 4.4 1400 5000 8× 106

0.54 3.51 0.5 1.5 0.7 6.2 2100 5000 8× 106

the assumption of local isotropy and Taylor’s hypothesis,	 and� are the Kolmogorov and Taylor length
scales, respectively, the microscale Reynolds numberR� ≡ u′�/�, andfs is the sampling frequency.

For set I it is important to test whether the separation between the two probes is indeed orthogonal to
the mean wind. (We do not need to worry about this point in set II, since the probes are above each other.)
To do so one computes the cross-correlation function〈u1(t + �)u2(t)〉. Here,u1 andu2 refer to velocity
fluctuations in the direction of the mean wind, for probes 1 and 2, respectively. If the separation were
precisely orthogonal to the mean wind, this quantity should be maximum for� = 0. Instead, for set I, it
was found that the maximum shifted slightly to�=0.022 s, implying that the separation was not precisely
orthogonal to the mean wind. To correct for this effect, the data from the second probe were time-shifted
by 0.022 s. This amounts to a change in the actual value of the orthogonal distance. The effective distance
is � ≈ 54 cm (instead of the 55 cm that was set physically). The coordinates were chosen such that the
mean wind direction is along the 3-axis, the vertical is along the 1-axis and the third direction orthogonal
to these is the 2-axis. We denote these directions by the three unit vectorsn̂, m̂, andp̂, respectively. The
raw data available from set I isu(3)(t) measured at the positions of the two probes. In set II each probe
reads a linear combination ofu(3)(t) andu(1)(t) from which each component is extractable. From these
raw data we would like to compute the scale-dependent structure functions, using the Taylor hypothesis
to surrogate space for time. This needs a careful discussion.

6.1.2. Theoretical constructs: the Taylor hypothesis, inner and outer scales
Decades of research on the statistical aspects of thermodynamic turbulence are based on the Taylor

hypothesis[107], which asserts that the fluctuating velocity field measured by a given probe as a function
of time,u(t) is the same as the velocityu(r/U) whereU is the mean velocity andr is the distance to a
position “upstream” where the velocity is measured att=0. The natural limitation on the Taylor hypothesis
is provided by the typical decay time of fluctuations of scaler. Within a K41 scaling theory, this time
scale is the turn-over timer/

√
S(r) whereS(r) ≡ S��(r). With this estimate, the Taylor hypothesis is

expected to be valid when
√
S(r)/U → 0. SinceS(r)→ 0 whenr → 0, the Taylor hypothesis becomes

exact in this limit. We will use this to calibrate the units when we employ two different probes and read
a distance from a combination of space and time intervals.

The Taylor hypothesis has also been employed when the mean velocity vanishes, and instead ofU

one uses the root-mean-squareu′. Ref.[139] has presented a detailed analysis of the consequences of the
Taylor hypothesis on the basis of an exactly soluble model. In particular, ways were proposed there to
minimize the systematic errors introduced by the use of the Taylor hypothesis. In light of that analysis
we will use here an “effective” windUeff which for surrogating the time data of a single probe is made
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of a combination of the mean windU and the root-mean-squareu′,

Ueff ≡
√
U

2+ (b̃u′)2 , (136)

where b̃ is a dimensionless parameter. Evidently, when we employ the Taylor hypothesis in log–log
plots of structure functions using time series measured in asingleprobe, the value of the parameterb̃

is irrelevant, changing just the (arbitrary) units of length (i.e. the arbitrary intercept). When we used
data collected from two probes, we mix measured distance and surrogated distance, and the parameter
b̃ becomes a unit fixer. The numerical value of this parameter is found in[139] by the requirement that
the surrogated and directly measured structure functions coincide in the limitr → 0. When we do not
have the necessary data we will use values ofb̃ suggested by the exactly soluble model treated in[139].
The choice of these values can be justified a posteriori by the quality of the fit of to the predicted scaling
functions.

When we have two probes placed at different heights the mean velocity andu′ as measured by each
probe do not coincide. In applying the Taylor hypothesis one needs to decide which value ofUeff is most
appropriate. This question has been addressed in detail in Ref.[139] with the final conclusion that the
choice depends on the velocity profile between the probe. In the case oflinear shear the answer is the
precise average between the two probes,

Ueff ≡
√
U1

2+ U2

2

2

+ b̃
u′21 + u′21

2
, (137)

where the subscripts 1, 2 refer to the two probes, respectively. In all the subsequent expressions we will
therefore denote separations byr, and invariably this will mean Taylor-surrogated time differences. The
effective velocity will be (136) or (137) depending on having probes at the same height or at different
heights. The value of̃b will be b̃ = 3 following Ref. [139]. It can be shown that the computed scaling
exponents are not sensitive to the changingb. (They change by a couple of percents upon changingb by
30%.) In seeking scaling behavior one needs to find the inner and outer scales. Below the inner scale all
structure functions have an analytic dependence on the separation,S(r) ∼ r2, and above the outer scale
the structure functions should tend to a constant value. We look at the longitudinal structure functions

S33(r)= 〈(u3(x + r)− u3(x))2〉
computed from a single probe in set I and from the probe at 0.54 m in set II, seeFig. 7. We simultaneously
consider the transverse structure function

S11(r)= 〈(u1(x + r)− u1(x))2〉
computed from the probe at 0.54 m in set II, seeFig. 8. The spatial scales are computed using the local mean
wind in both cases since the scaling exponent for the single-probe structure function are not expected to
be affected by the choice of convection velocity. This choice does determine the value ofr corresponding
to a particular time scale however. One may expect that any correction to the numerical value ofr is small
for a different choice of convection velocity and not crucial for the qualitative statements that follow.
In Fig. 7 we clearly see ther2 behavior characterizing the transition from the dissipative to the inertial
range. As is usual, this behavior persists about a half-decade above the “nominal” Kolmogorov length
scale	. There is a region of cross-over and then the isotropic scaling∼ r0.68 expected for small scales
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in the inertial range begins. We thus have no difficulty at all in identifying the inner scale, it is simply
revealed as a natural crossover length in this highly resolved data. We understand by now that we cannot
expect to be able to fit with this single exponent for larger scales and must include scaling contributions
due to anisotropy. We expect that the contributions due to anisotropy will account for scaling behavior
up to the outer scale of a three-dimensional flow patterns. The question therefore is how to identify what
this large scale is. One approach would be to simply use the scale where the structure function tends to
a constant, which corresponds to the scale across which the velocity signal has decorrelated. It becomes
immediately apparent that this is not a reasonable estimate of the relevant large scale.Fig. 7shows that
the structure function stays correlated up to scales that are at least an order of magnitude larger than
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the height at which the measurement is made. On the other hand, if we look at the transverse structure
function computed from the probe at 0.54 m,Fig. 8 we see that it ceases to exhibit scaling behavior at
a scale that is of the order of the height of the probe. It appears that we are observing extremely flat
eddys that are correlated over very long distances in the horizontal direction but have a comparatively
small correlation lengths in the direction perpendicular to the boundary. Since we know that the presence
of the boundary must limit the size of the largest three-dimensional structures, the height of the probe
should be something of an upper bound on the largest three-dimensional flow patterns that we can detect
in experiments. Thus we arrive at a qualitative understanding of the kind of flow that is observed in these
atmospheric measurements. The size of the largest three-dimensional structures is determined by the
decorrelation length of the transverse structure function. This is because the transverse components of the
velocity are unaffected by the extended, persistent, two-dimensional eddys that govern the behavior of
the longitudinal components. The theory of scaling behavior in three-dimensional turbulence can usefully
be applied to only those flow patterns that are truly three-dimensional. The extended flat eddys must be
described in terms of a separate theory, including maybe notions of two-dimensional turbulence which has
very different scaling properties[140]. Such considerations are outside the scope of this review. Rather,
in the following analysis, the outer-scale was chosen to be of the order of the decorrelation length of the
transversestructure function (where available) or of the height of the probe. We will see below that up
to a factor of 2 these are the same; takingL to be as twice the height of the probe is consistent with all
data. We use this estimate in the study of both transverse and longitudinal objects.

6.1.3. Extracting the universal exponents of higher j sectors
We consider the second-order structure function

S��(r )= 〈(u�(x + r )− u�(x))(u�(x + r )− u�(x))〉 . (138)

The lowest-order anisotropic contribution to the symmetric (in indices), even parity (inr due to homo-
geneity), second-order structure function is thej =2 component of theSO(3) symmetry group. Ref.[33]
presents a derivation of them = 0 axisymmetric (invariant under rotation about the 3-axis) part of the
j = 2 contribution to this structure function in homogeneous turbulence. The derivation of the fullj = 2
contribution to the symmetric, even parity structure function appears in Appendix C.Fig. 9b shows the
fit to the structure function computed from a single probe in set I

S33(r, �= 0)= 〈(u(3)1 (x + r)− u
(3)
1 (x))2〉 , (139)

where the subscript 1 denotes one of the two probes, with just thej=0 contribution. The best-fit exponent
for the range 0<r/�<4.5 is 
(2)0 = 0.68± 0.01 (Fig.9a). Above this range, was impossible to obtain a
good fit to the data with just the isotropic exponent andFig. 9b shows the peel-off from isotropic behavior
abover/�= 4.

To find thej = 2 anisotropic exponent one needs to use data taken from the two probes. To clarify the
procedure we show in Fig.10 the geometry of set I. What was computed is actually

S33(r, �)= 〈[u(3)1 (Ueff t + Ueff tr̃ )− u
(3)
2 (Ueff t)]2〉 .
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Here� = arctan(�/Ueff tr̃ ), tr̃ = r̃/Ueff , andr =
√

�2+ (Ūeff tr̃ )
2. Ueff was as in Eq. (136) withb = 3.

We will refer from now on to such quantities as

S33(r, �)= 〈(u(3)1 (x + r)− u
(3)
2 (x))2〉 . (140)

Next, one may fix the scaling exponent of the isotropic sector as 0.68 and find thej = 2 anisotropic
exponent that results from fitting to the fullj = 2 tensor contribution. Finally, one needs to fit the objects
in Eqs. (139) and (140) to the sum of thej = 0 (with scaling exponent
(2)0 = 0.68) and thej = 2
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contributions (see Appendix C)

S33(r, �)= S33
j=0(r, �)+ S33

j=2(r, �)= c0

( r
�

)
(2)0 [2+ 
(2)0 − 
(2)0 cos2�]

+ a
( r

�

)
(2)2 [(
(2)2 + 2)2− 
(2)2 (3
(2)2 + 2) cos2�+ 2
(2)2 (
(2)2 − 2) cos4�ig]

+ b
( r

�

)
(2)2 [(
(2)2 + 2)(
(2)2 + 3)− 
(2)2 (3
(2)2 + 4) cos2�+ (2
(2)2 + 1)(
(2)2 − 2) cos4�]

+ a9,2,1

( r
�

)
(2)2 [−2
(2)2 (
(2)2 + 2) sin� cos�+ 2
(2)2 (
(2)2 − 2) cos3� sin�]

+ a9,2,2

( r
�

)
(2)2 [−2
(2)2 (
(2)2 − 2) cos2� sin2�]

+ a1,2,2

( r
�

)
(2)2 [−2
(2)2 (
(2)2 − 2) sin2�] . (141)

The above fit was performed using values of
(2)2 ranging from 0.5 to 3. The best value of this exponent is
the one that minimizes the2 for the fits. From Fig.11one may read the best value to be 1.38±0.15. The fits
with this choice of exponent are displayed inFig. 12. The corresponding values of the 5 fitted coefficients
can be found in the paper[33]. The range of scales that are fitted to this expression is 1<r/�<25. We
thus conclude that the structure function which is symmetric inr exhibits scaling behavior over the whole
scaling range, but this important fact is missed if one does not consider a superposition of thej =0 and 2
contributions. Finally, let us note that the value of the exponent is perfectly in agreement with the analysis
of numerical simulations[38], in which one can comfortably integrate the structure function against the
basis functions, eliminating all contributions exceptj = 2 (see next section).
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6.1.4. Extracting thej = 1 component
In homogeneous flows, it follows from symmetry and parity that the often computed and widely

analyzed structure function as defined in Eq. (138) does not possess any contribution from thej = 1
sector. The lowest-order anisotropic contribution belongs to thej = 2 sector. In order to isolate the
scaling behavior of thej=1 contribution in atmospheric shear flows we must either explicitly construct a
new tensor object which will allow for such a contribution, or see if it can be extracted from the structure
function itself computed in the case ofinhomogeneity. We have pursued both avenues. In the former, we
construct the tensor

T ��(r)= 〈u�(x+ r)− u�(x))(u�(x+ r)+ u�(x))〉 . (142)

It is easily seen that the function vanishes both in the case of� = � and whenr is in the direction of
homogeneity. From data set II we can calculate this function for non-homogeneous (in the shear direction)
scale-separations. In general, this will exhibit mixed parity and symmetry and therefore, to minimize as
far as possible the final number of fitting parameters we look at only the antisymmetric contribution. We
derive the tensor contributions in thej = 1 sector for the antisymmetric case in Appendix D and use this
to fit for the unknownj =1 exponent. Below we describe the results of this analysis. Next, we computed
the�-dependent structure function from set II. We expect that this could exhibit thej = 1 component, as
inhomogeneity does not allow us to apply incompressibility in the different symmetry and parity sectors
to eliminate this contribution as in the case of the homogeneous structure function. This structure function
is symmetric but of mixed parity. We derive the tensor contributions in thej =1 sector for the symmetric
case in Appendix D and use this to fit for thej = 1 exponent.

6.1.5. Antisymmetric contribution
We consider the tensor object in Eq. (142). In order to have as few parameters as possible in the fitting

procedure, we take the antisymmetric part

T̃ ��(r)= T ��(r)− T ��(r)

2
= 〈u�(x)u�(x+ r)〉 − 〈u�(x)u�(x+ r)〉

which will only have contributions from the antisymmetricj = 1 basis tensors. An additional useful
property of this object is that it does not have any contribution from the isotropic helicity-freej = 0
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Fig. 13. Right: the2 minimization by the best-fit value of the exponent
(2)1 of the j = 1 anisotropic sector from the fit to

�-dependent̃T 31(r, �) function in the range 0<r/�<2.2. Left: the fitted̃T 31(r, �) function. The dots indicate the data and the
line is the fit.

sector due to its antisymmetry. This allows us to isolate thej = 1 contribution and determine its scaling
exponent
(2)1 starting from the smallest scales available. Using data from the probes at 0.27 m (probe 1)
and at 0.11 m (probe 2) we calculate

T̃ 31(r)= 〈u(3)2 (x)u(1)1 (x+ r)〉 − 〈u(3)1 (x+ r)u(1)2 (x)〉 ,

where again superscripts denote the velocity component and subscripts denote the probe at which this
component is measured. We want to fit this object to the tensor form derived in Appendix D, namely

T̃ 31(r, �,�= 0)=−a3,1,0r

(2)1 sin�+ a2,1,1r


(2)1 + a3,1,−1r

(2)1 cos�.

Fig. 13gives the2 minimization of the fit as a function of
(2)1 and we use the best value of 1± 0.15
for the final fit. This is shown in the left panel. The fit inFig. 13peels off at the end of the fitted range.
The maximum range over which one can fit is of the order of the height of the probes and again, this is
consistent with the considerations presented above.

6.1.6. Symmetric contribution
Finally, we compute the structure function Eq. (140) where the subscripts denote probe 1 at 0.27 m

and probe 2 at 0.11 cm. As discussed in Appendix D, since the scale separation has an inhomogeneous
component, we expect a contribution from thej =1 anisotropic sector and we would like to extract what
the scaling exponent in this sector is. Note that thej =0 sector contributestwo independent tensor forms
with coefficients we will denote byc1 andc2, since incompressibility does not provide a constraint to
relate them. This fact combined with Eq. (D.8) gives us the tensor form to which we must fit our function

S33(r, �)= c1r

(2)0 + c2r


(2)0 cos2�+ a1,1,0r

(2)1 cos�+ a7,1,0r


(2)1 2 cos�

+ a9,1,0r

(2)1 cos3�+ a8,1,1r


(2)1 (−2 cos� sin�)+ a1,1,−1r

(2)1 sin�

+ a9,1,−1r

(2)1 cos2� sin� . (143)

We fix the exponent
(2)0 to be 0.68 and perform fits with varying values of
(2)1 for 8 unknown coefficients.

The best value of
(2)1 is obtained for the range 0<r/�<4.2 and is 1.05± 0.15 as is shown inFig. 14.
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In the left panel we show the fit to the data using this value of the exponent. The fit peels off at the end
of the fitted range at the scale on the order of twice the height of the probe, consistent with the earlier
discussion. There does not exist a well-defined
(2)1 as given by the standard2 minimization procedure
for ranges smaller or larger than that fitted for inFig. 14. The quality of the fit is good although, as was
expected from the large number of parameters in the fitting function Eq. (143),2 as a function of the

(2)1 is not as smooth as for all previous fits and its minimum is a relatively weak one.

6.1.7. Summary and conclusions
In summary, we considered the second-order tensor structure functions of velocity differences in the

atmospheric boundary layers. The following conclusions appear important:

(1) The atmospheric boundary layer exhibits three-dimensional statistical turbulence intermingled with
flow patterns whose statistics are quite different. The latter are eddys with quasi-two-dimensional
nature, correlated for hundreds of meters, having little to do with the three-dimensional fluctuations
discussed above.

(2) We found that the “outer scale of turbulence” as measured by the three-dimensional statistics is of
the order of twice the height of the probe.

(3) The inner scale is the usual dissipative crossover, which is clearly seen as the scale connecting two
different slopes in log–log plots.

(4) Between the inner and the outer scales the sum of the components up toj = 2 appears to offer an
excellent representation of the structure function.

(5) The scaling exponents
(2)j are measured as 0.68± 0.01, 1± 0.15, 1.38± 0.10 for j = 0,1,2,
respectively.

We note that as far as the low-orderj sectors are concerned, the picture that emerges for Navier–Stokes
turbulence is not different from the linear advection problems that were treated in the previous section. If
the trends seen here continue for higherj values, we can rationalize the apparent tendency toward isotropy
with decreasing scales. If indeed every anisotropic contribution introduced by the large-scale forcing

(or boundary conditions) decays as(r/L)

(2)j with increasing
(2)j as a function ofj , then obviously when
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r/L→ 0 only the isotropic contribution survives. This is a pleasing notion that justifies the modeling of
turbulence as isotropic at the small scales.

6.2. Homogeneous shear

In this subsection we discuss recent experiments in which anisotropy is created without inhomogeneity
[7,34,35]; such experiments are particularly appealing for our purposes.Homogeneous-shear flow can be
realized in a wind tunnel by using a variable solidity screen followed by flow straighteners. Such a set-up
results in a shear flow that remains approximately constant for the length of the tunnel. To produce high
Reynolds numbers one places an active grid before the shear generating screen[7]. In this wayRe� can be
as high as 1000. To assess directly the effects of anisotropy it is useful to measure statistical objects that
vanish identically in the isotropic sector. A possible choice is the set of skewness and hyper-skewness
[14,42,141]as explained in Section 2.5. Other purely anisotropic inertial range observables can be defined
by mixing longitudinal and transversal increments with an odd number of transversal components:

S(p,2q+1)(r)= 〈�up� (r)�u2q+1
t (r)〉 . (144)

Systematic measurements of these anisotropic mixed correlation functions was reported in[10,34,35].
From the experimental data it is not possible to disentangle exactly different anisotropic projections in
different sectors. This is becauseSO(3) projection requires the knowledge of the whole velocity field in
a 3d sub-volume, something clearly out of reach in any experimental apparatus. The simplest working
hypotheses one can make is that, due to the hierarchical organization of anisotropic scaling exponents, the
statistical behavior of quantities as (144) is dominated, at scales small enough, by the leadingj=2 sector.
In other words, the experimental measurements of the scaling properties of (144) is the best estimate of
the exponent
(n=p+2q+1)

2 . In [34,35]the plots of purely anisotropic quantities like (144) up to ordern=8
with n=p+ 2q + 1 were shown. The data clearly show that these purely anisotropic structure functions
have quite good power-law behavior with exponents that are sub-leading with respect to the exponents
of the isotropic structure functions of the same order,n. For exampleS(1,3)(r) ∼ r1.56 while the fourth-
order longitudinal structure function in isotropic ensembles is known to scale asS(4,0)(r) ∼ r1.27. Similar
qualitative and quantitative results were obtained by analyzing data from an atmospheric boundary layer
in [10] and in the boundary layer close to a wall[37]. In the latter two works, a phenomenological
fitting procedure to the large-scale behavior allowed the authors to find a power law for the anisotropic
structure functions which pertain to a much larger range of scales. We draw the reader’s attention to the
discrepancy in the best fit for the scaling exponents founds forS(1,3)(r) andS(3,1)(r) in [34,35]. Similar
discrepancies are also reported for higher-order structure functions. In our view, this cannot be taken
as evidence that there is aq-dependence of the scaling exponents of theSO(3) projections. First, the
anisotropic exponents are relatively inaccurate due to statistical errors; the amplitudes of the anisotropic
fluctuations are relatively small. Second, as already noted, the experimental data cannot disentangle
exactly the contribution of thej = 2 sector. Therefore, it may well be that contributions from thej = 4
(and higher) sectors affect differently the correlation functions with different tensorial structure. Similarly,
other experimental investigation focused on theSO(3) decomposition[36,142,143]have found results
depending on the geometric set-up of the analyzing probes. The experimental analysis of anisotropic
turbulence via theSO(3) decomposition is in its infancy; more refined experimental techniques are
needed before a firm conclusion can be reached on these issues.
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6.2.1. Explanation of persistence of anisotropies
As discussed in Section 2.5 there is numerical and experimental evidence for the persistence of small-

scale anisotropic fluctuations in various instances[7,10,24,39,60]. The issue has many important con-
sequences. We would like to refer to the violation of thereturn-to-isotropyin different meanings[39].
A strongviolation would be implied if the following set of inequalities between different anisotropic
exponents of the same correlation function were broken:


(n)0 < 
(n)1 < · · ·< 
(n)j , (145)

i.e. if one, or more, anisotropic sector becomes leading with respect to the isotropic one. This would destroy
the phenomenology of turbulence as developed since Kolmogorov’s theory in 1941. Turbulence would
become more and more anisotropic at smaller and smaller scales. As a result, strong non-universalities
in small-scales statistics would show up depending on which anisotropic sector is switched on/off by
the large-scale forcing. Astrongviolation of thereturn-to-isotropypostulate has never been observed
in Navier–Stokes turbulence. On the other hand, when the hierarchy (145) holds, any dimensionless
anisotropic observables made of ratios between anisotropic and isotropic projections of thesamecor-
relation function vanishes in the small-scales limit. For example, focusing on the decomposition of
longitudinal structure functions (44) we may write

lim
r→0

S
(n)
jm(r)

(S
(n)
00 (r))

∼ r

(n)j −
(n)0 → 0 . (146)

A new phenomenon occurs when anisotropic fluctuations are assessed by using dimensionless observ-
ables made ofdifferentcorrelation functions. For instance, by using again theSO(3) decomposition of
longitudinal structure function (44) one may build up anisotropic observables defined as

R
(n)
jm(r)=

S
(n)
jm(r)

(S
(2)
00 (r))

n/2
∼ r

(n)j with (n)j = 
(n)j − n

2

(2)0 . (147)

This is thenth-order moment of the velocity probability density function, normalized by its isotropic
second-order moments. The quantities defined in (147) must be exactly zero in isotropic ensembles, and
should go to zero as power laws,R

(n)
jm(r) ∼ rj/3, in an anisotropic ensemble in which the dimensional

scaling (46) is satisfied. On the other hand, results from experiments and numerics show a much slower
decay, and, in some cases, no decay at all[7,39]. We refer to this phenomenon asweakviolation of
thereturn-to-isotropy. Such a weak violation is not in contradiction with the inequalities (145); there the
relative importance of anisotropic fluctuations with respect to isotropic fluctuation of thesamecorrelation
function are implied. The violation of the dimensional recovery-of-isotropy is simply due to the existence
of anomalous scaling in the anisotropic sectors. Indeed, in this case, the exponents,(n)j , governing the
LHS of (147) can assume values much smaller than the dimensional estimate (including negative values!).
This is exactly what is observed in the experiments and numerics. FromTable 3one realizes that due
to the presence of anomalous scaling in the anisotropic sectors we have a slow recovery-of-isotropy, in
agreement with what was explained before.

The anisotropic observables built in terms of the generalized flatness or skewness discussed in
Section 2.5 are nothing but Eq. (147) evaluated at the dissipative length scale,r = 	. Therefore, the
“persistence-of-anisotropies” discussed in[7,24] can be explained invoking the very same reasoning.
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Table 2
Measured scaling exponents forS(p,2q+1)(r) of various orders in two experiments

(p,2q + 1) (1,1) (1,3) (3,1) (5,1) (3,3) (1,5) (7,1) (5,3) (3,5)

WS 1.05 1.56 1.42 2.02 1.89 1.71 2.33 2.22 1.99
KS 1.22,1.12 1.58,1.54 — — 2.14,2.00 — — — —

WS corresponds to[35] and KS to[10].

6.2.2. Summary of experimental results: universality of the anisotropic sectors
Comparing the results obtained in[10,34,35]the following picture emerges. First, all the correlation

functions up ton= 10, showanomalousscaling behavior, where anomalous is meant with respect to the
dimensional Lumley-like prediction discussed in Section 4.4. Second, the values of scaling exponents
extracted from the two different experiments[35,10] are in good qualitative agreement (seeTable 2).
This is an important first confirmation of theuniversalityof scaling exponents in thej = 2 anisotropic
sector. Finally, there exists a clear hierarchy between isotropic and anisotropic scaling exponents, the
latter being always larger for any given order,n of the correlation function. This hierarchical organization
is the necessary and sufficient requirement for thereturn-to-isotropyto hold, i.e. the small-scale statistics
of any correlation function is dominated by the isotropic fluctuations. Nevertheless, the gap between
isotropic and anisotropic exponents,
(n)0 −
(n)2 , tends to shrink whenn increases, implying that anisotropic
contributions may exhibit important sub-leading effects also at very highRe.

7. Analysis of DNS data

Direct numerical simulations of turbulence are natural grounds where the utility of theSO(3) decom-
position can be exploited to its maximum benefit. The reason for this is that numerical simulations, in
contrast to current experiments, provide access to the full velocity field at all points of the turbulent
domain. Therefore, the fullSO(3) decomposition can be realized, without the constraints of best fits to
partial data. Given a tensor structure functionS(n)(r), cf. Eq. (31), we can integrate it against the spherical
tensors,B(n)

qjm(r̂) [e.g., (35)], on a sphere of radiusr. These integrations yield the projection of the structure
function on the different sectors of theSO(3) group, by virtue of the orthogonality of the basis tensors.
On the other hand, DNS suffer from limited Reynolds numbers; consequently they have relatively short
inertial ranges.

Prior to the introduction of theSO(3) decomposition, the numerical investigations of anisotropic flows
were focused on either single-point or two-point correlations, limited, often, to the analysis of the Fourier
transforms in wavevector space. The most recent, highly resolved, numerical investigation of this kind
was reported in[41]; there the full tensorial properties of the Fourier transform of the two-point velocity

correlation,Q��(k)
def= ∫ dr eikr〈u�(x + r)u�(x)〉, were calculated in ahomogeneousshear[6,144]. The

main result is a confirmation of Lumley’s prediction for the scaling exponent of the purely anisotropic
co-spectrum:

E��(k) ∼ k−7/3, whereE��(k)=
∫
k/2<|p|<2k

dpQ��(p) , (148)
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where� �= � to eliminate the isotropic contribution. Similar computations were also performed for the
case of stably stratified turbulence[145]. Only recently DNS were performed to probe the anisotropic
component in a systematic way by exploiting theSO(3) decomposition[18,38,40,138,146]. Here we
review the main findings, showing that

(1) the scaling laws (log–log plots) at moderate Reynolds numbers are significantly improved by pro-
jecting the raw correlation functions onto eachj -sectors. The improvement is particular noticeable
whenever strong anisotropies are present in the system, as in the case of channel flows[38,146];

(2) anisotropic sectors withj�2 (inaccessible in present experimental data) possess good scaling laws
[18,40];

(3) the scaling exponents are discrete and increasing as a function ofj .
(4) the exponents areanomalous; i.e. they differ from the dimensional prediction (46).
(5) there exists preliminary evidence that also forj >2, the anomalous exponents areuniversal, i.e. the

scaling properties are independent of the external forcing mechanism[138].

DNS were performed both in wall-bounded flows and in homogeneous (but anisotropic) turbulence. In
wall-bounded flows the anisotropies are accompanied byinhomogeneouseffects. The presence of such
effects may spoil the very meaning of scaling, and theSO(3) decomposition should be supplemented by
some tool to project on the homogeneous components. Otherwise, theSO(3) decomposition must be used
carefully, and locally, only in those regions of the tested flow where inhomogeneous effects are confined
mostly to large scales[38,146]. In the second part of this section, we discuss numerical experiments
built such as to have a perfectlyhomogeneousandanisotropicstatistics at all scales. One such example
is homogeneous shear flows[20,42]. More recently, other homogeneous anisotropic flows have been
invented and simulated, in particular the random-Kolmogorov flow[18,40,147]and a convective cell
with an imposed linear mean profile of temperature[138].

7.1. Anisotropic and inhomogeneous statistics: channel flows

In this section, we discuss the analysis of a DNS of a channel flow using theSO(3) decomposition. The
coordinates are chosen such thatx̂, ŷ andẑ are the stream-wise, span-wise, and wall-normal direction,
respectively. The simulation was done on a grid with 256 points in the stream-wise direction and 128×128
points in the two other directions. The boundary conditions were periodic in the span-wise and stream-
wise directions and no-slip on the walls. The Reynolds-number based on the Taylor micro-scale was
quite moderate,R� ≈ 70 at the center of the channel(z= 64). The simulation was fully symmetric with
respect to the central plane. For more details on the averaged quantities and on the numerical code, see
Refs.[38,148,149].

The analysis focused on longitudinal second-, fourth- and sixth-order structure functions:

S(n)(rc, r) ≡ 〈[�u�(rc, r)]n〉, �u�(r
c, r) ≡ r̂ · [u(rc+ r, t)− u(rc− r, t)] .

Therc coordinate specifies the location of the measurement (i.e., the center of mass of the two measurement
points), and 2r is the separation vector. Previous analysis of the same database[148]as well as of other DNS
[150]and experimental data[9,77]in anisotropic flows found that the scaling exponents of energy spectra,
energy co-spectra and of longitudinal structure functions exhibit strong dependence on the positionrc.
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z =64 (+). The data represented by (×) correspond to the raw longitudinal structure function,S(4)(rc

z =64, rx̂) averaged over

the central plane only. The dashed line corresponds to the intermittent isotropic high-Reynolds number exponent
(4)0 = 1.28.

For example, in[21] the authors studied the longitudinal structure functions at fixed distances from the
walls:

S(n)(r, z) ≡ 〈(ux(x + r, y, z)− ux(x, y, z))
n〉z ,

where〈· · · 〉z denotes a spatial average on a plane at a fixed heightz, 1<z<64. For this set of observables
they found that: (i) These structure functions did not exhibit clear scaling behavior as a function of the
distancer. Consequently, one needed to resort to extended-self-similarity (ESS)[56] in order to extract

a set of relative scaling exponents
̂
(n)

(z) ≡ 
(n)(z)/
(3)(z); (ii) the relative exponents,
̂
(n)

(z) depended
strongly on the heightz. Moreover, only at the center of the channel and very close to the walls the
error bars on the relative scaling exponents extracted by using ESS were small enough to claim the very
existence of scaling behavior in any sense. Similarly, an experimental analysis of a turbulent flow behind
a cylinder[77] showed a strong dependence of the relative scaling exponents on the position behind the
cylinder for not too big distances from the obstacle, i.e. where anisotropic effects may still be relevant
in a wide range of scales. In the following, we present an interpretation of the variations in the scaling
exponents observed in non-isotropic and non-homogeneous flows upon changing the position in which
the analysis is performed. In particular, we will show that decomposing the statistical objects into their
different(j,m) sectors rationalizes the findings, i.e. scaling exponents in given(j,m) sector appear quite
independent of the spatial location; only theamplitudesof the SO(3) decomposition depend strongly
on the spatial location. The analysis showed three major results. The first was the vast improvement in
scaling behavior of the structure functions as a result of the decomposition. A typical example is found in
Fig. 15where the raw fourth-order structure function, evaluated on the central plane, is compared to its
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j =0 component. Without theSO(3) decomposition there is no scaling behavior at all and one needs ESS
to estimate the scaling exponents. On the other hand, thej=0 component of the structure function shows
a clear scaling behavior with the expected exponent,
(4)0 =1.28. This strengthens the foliation hypothesis,
according to which, the raw structure function is a superposition of power laws from different sectors of
theSO(3) group. Such a sum loses its scale invariance once the weights of the different exponents are
of the same order and the inertial range is small. In such cases, one needs theSO(3) decomposition to
isolate the different sectors and retain scale invariance.

A second prominent result is the apparent universality of the isotropic exponents. To show this in[38]
the local slopes, dlog(S(4)00 (r))/dlog(S(2)00 (r)), of the ESS curves of the isotropic fourth-order structure-
function versus the isotropic second-order structure function were calculated at varying the distance from
the wall. Despite their different locations, all curves show the same ESS slope 1.82, which is the expected
(anomalous) value. InFig. 16one picture is presented for the logarithmic local slopes at two different
distances from the channel boundary. To appreciate the improvements in scaling and universality, also
the slopes of the ESS on the raw structure functions are presented. Finally, the analysis provided another
evidence that thej =2 scaling exponent of the second-order structure function is about 4/3, which is the
dimensional theoretical prediction given in (27) (see also[8,18,96–98]). Considering the relatively low
Reynolds number and the fact that the prefactorsaj,m in theSO(3) decomposition (145) are non-universal,
together with the experimental result reported in[10,33–35], these findings give strong support to the
view that the scaling exponent in thej = 2 sector is universal. Before concluding this section we cite
that SO(3) andSO(2) decomposition have also been exploited in the analysis of channel flow data to
highlight the importance of structures as streaks and hairpin filaments typical of many wall-bounded flows



130 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164

Fig. 17. Log–log plot of instantaneous energy spectrum in the isotropic sectorE(k) (top). The straight line is the reference

isotropic k−5/3 power law. Instantaneous co-spectrumEyz(kz) (bottom). Here the straight line gives the referencek
−7/3
z

anisotropic Lumley prediction. The two spectra have been shifted along the vertical direction for the sake of presentation.

[146]. Preliminary investigation of the importance ofSO(3) decomposition to evaluate the performance
of sub-grid models used in large eddy simulations[151] have also been reported in[147]. A posteriori
tests on different LES models for strongly anisotropic flows were presented in[152].

7.2. Anisotropic-homogeneous flows

Direct numerical simulations offer the unique opportunity to study the physics of anisotropy inideal
situations, that is in perfectly homogeneous flows. Recently, considerable effort has been spent on sim-
ulating a random-Kolmogorov-Flow (RKF)[18,40,147]. The RKF is fully periodic, incompressible and
with anisotropic large-scale energy injection. A convenient choice for the forcing isf = (0,0, fz(x))
with fz(x) = F1 cos[2�x/Lx + �1(t)] + F2 cos[4�x/Lx + �2(t)], with constant amplitudesF1,2 and
independent, uniformly distributed,�-correlated in time and with random phases�1,2(t). The random
phases lead to a homogeneous statistics. To give a first validation of the statistical properties of the RKF
flow we plot inFig. 17the instantaneous energy spectrum,

E(k)=
∫
|q|=k

〈u(q) · u∗(q)〉dq .

It exhibits a scaling law in close agreement with the K41 isotropic behaviork−5/3. Also purely anisotropic
quantities as the co-spectra (148), show a good agreement with the Lumleyk−7/3. DNS of the RKF were
reported in[18,40,147]. The resolution was 2563 reachingRe� ∼ 100, collecting up to 70 eddy turn
over times. A long-time average is necessary because of the formation of persistent large-scale structures
inducing strong oscillations of the mean energy evolution. This is typical to many strongly anisotropic
flows. The viscous term was replaced by a second-order hyper-viscosity,−��2u. Thanks to both the high
degree of homogeneity and to the high number of independent samples, a quantitative analysis of scaling



L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164 131

 0.1

 1

 10

 10  100

S
00(2

) (r
)

log(r)

J=0

Undecomposed

 0

 0.5

 1

 1.5

 2

10 100

local slopes

Fig. 18. Analysis on the real space. Log–log plot ofS
(2)
00 (r) versusr (top curve), and of the three undecomposed longitudinal

structure functions in the three directionsx, y, z (three bottom curves). The straight line gives the best fit slope
(2)0 = 0.7. Inset:
logarithmic local slopes of the same curves in the main body of the figure (same symbols). Note that only the projected curve
shows a nice plateau.

laws of longitudinal structure functions up to the anisotropic sectorj = 6 and up to ordern = 6 was
possible. In other words, the longitudinal structure functions could be decomposed according to

S(n)(r)=
6∑

j=0

j∑
m=−j

S
(n)
jm(r)Yjm(r̂) for n�6 .

In Fig. 18we present the results for the isotropic sector. Here we compare the raw structure functions
in the three directions with the projectionS(2)00 (r), and their logarithmic local slopes (inset). Only for the
projected correlation it is possible to measure (with 5% of accuracy) the scaling exponent by a direct
log–log fit vs. the scale separation. The best fit gives
(2)0 =0.70±0.03. On the contrary, the undecomposed
structure functions are overwhelmed by the anisotropic effects present at all scales, and the scaling law is
completely spoiled. We stress the accuracy of these results; already at these modest Reynolds numbers it
is possible to ascertain the isotropic scaling laws if the anisotropic fluctuations are disentangled properly.

In Fig. 19there is an overview for the second-order structure functions in all the sectors, isotropic and
anisotropic, for which the signal-to-noise ratio is high enough to ensure statistically stable results. Sectors
with oddj are absent due to the parity symmetry of the longitudinal structure function. We conclude from
Fig. 19a clear foliation in terms of thej index: sectors with the samej but differentm exhibit very close
scaling exponents. InTable 3the measured exponents are compiled, showing the best power law fits for
structure functions of ordersn=2,4,6. We stress again the discreteness and monotonicity of the scaling
exponents as assumed in Eq. (145); there is no saturation of the exponents as a function ofj . Second,
the measured exponents in the sectorsj = 4 and 6 are anomalous, i.e. they differ from the dimensional
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Table 3
Summary of the numerical and experimental findings for the scaling exponents in the isotropic and anisotropic sectors

n j = 0, 
(n)0 —n/3 j = 2, 
(n)2 —(n+ 2)/3 j = 4, 
(n)4 — (n+ 4)/3 j = 6, 
(n)6 — (n+ 6)/3

2 0.70 (2) — 0.66 1.1 (1) — 1.33 1.65 (5) — 2.00 3.2 (2) — 2.66
4 1.28 (4) — 1.33 1.6 (1) — 2.00 2.25 (10) — 2.66 3.1 (2) — 3.33
6 1.81 (6) — 2.00 2.1 (1) — 2.33 2.50 (10) — 3.33 3.3 (2) — 4.00

The values for the anisotropic sectorj=2 are taken from the experiments[10,35]. For the values extracted from the numerical
simulation (columnsj = 0,4,6), error bars are estimated from the oscillation of the local slopes[40,147]. For the experimental
data the error is given as the mismatch between the two experiments. For all sectors we also give the dimensional estimate


(n)
j
= (n+ j)/3 [18].

estimate given in 46. Unfortunately, from the RKF data it was not possible to obtain clean results for the
j = 2 sector. This is because of the presence of an annoying change of sign in the projectionsS

(n)
2m(r)

for anym (and any ordern). Still, the overall consistency of the foliation and hierarchical organization
of scaling exponents can be checked by collecting the scaling exponents in thej = 2 sector from the
two sets of experiments[10,35] previously discussed. InFig. 20we show both numerical data and the
experimental values as extracted from[10,35]. The resulting picture is fully coherent: experimental data
coming from thej = 2 sector fit well in the global trend. As one can see fromTable 3all the anisotropic
sectors showanomalousscaling laws.
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7.2.1. Universality of anisotropic fluctuations
The third numerical experiment that we discuss here is devoted to studyuniversal properties of

anisotropic scaling. We have already commented that there is a nice qualitative and quantitative agree-
ment between the values extracted for thej = 2 sector (the only one available from experimental data)
from different experiments. In order to check whether this universality holds also in higher anisotropic
sectors one has to rely on DNS. In[138] a first direct comparison between anisotropic scaling of lon-
gitudinal structure functions from two different homogeneous systems, the RKF and ahomogeneous
Rayleigh–Bénardconvective flow was reported.

A Homogeneous Rayleigh–Bénardsystem is a convective cell with fixed linear mean temperature profile
along the vertical direction. The flow is obtained by decomposing the temperature field as the sum of a
linear profile plus a fluctuating part,T (x, y, z; t) = T ′(x, y, z; t) + (�T/2− z�T/H), whereH is the
cell height and�T the background temperature difference. The evolution of the system can be described
by a modified version[153] of the Boussinesq system[154]

�tu+ (u · ∇)u=−∇p + �∇2u+ �gT ′ẑ ,

�t T
′ + (u · ∇)T ′ = �∇2T ′ − �T

H
vz ,

where� is the thermal expansion constant,� and� the kinematic viscosity and the thermal diffusivity
coefficients, andg is the acceleration due to gravity. In[138] fully periodic boundary conditions were
used for the velocity field,u, and temperature,T ′, fields.

Anisotropic effects in the Rayleigh–Bénard system were analyzed in[138] starting from the stationary
equation for the second-order velocity structure functions; the extension of Kármán–Howarth equation



134 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164

in the presence of a buoyancy term[155]. The result is, neglecting for simplicity tensorial symbols:

〈�u(r )3〉
j=0,1,...

∼ ε̄r
j=0
+ �gẑr·

j=1 ⊗
〈�T (r )�u(r )〉

j=1,2,...
, (149)

where ε̄ denotes the energy dissipation,〈�u(r )3〉 and 〈�T (r ) �u(r )〉, the general third-order velocity
correlation and temperature–velocity correlation, respectively. In Eq. (149) for each term the value of
its total angular momentum,j , is indicated. Notice that the energy dissipation term in (149) has a non-
vanishing limit, for highRe, only in the isotropic sector,j =0. On the other hand, the buoyancy coupling,
�gẑ, brings only angular momentumj = 1. Due to the usual rule of composition of angular momenta we
have that the buoyancy term,�gẑ· 〈�T (r ) �u(r )〉, has atotal angular momentum given byjtot= 1⊗ j =
{j − 1, j, j + 1}. Using the angular momenta summation rule forj , one can decompose the previous
equation obtaining the following dimensional matching, in the isotropic sector:

〈�u(r)3〉j=0 ∼ ε r + �gẑr〈�u(r)�T (r)〉j=1+ · · ·
and in the anisotropic sectors,j >0:

〈�u(r)3〉j ∼ �g ẑr〈�u(r)�T (r)〉(j−1) + · · · , (150)

where sub-dominant contributions coming from thej andj + 1 sectors of〈�v(r)�T (r)〉 are neglected.
In the isotropic sector the buoyancy term is sub-dominant with respect to the dissipation term at

scales smaller than the Bolgiano length,LB = (ε̄)5/4N−3/4(�g)−3/2 whereN is the rate of temperature
dissipation. This is the case for the numerical simulation presented in[138], where velocity fluctuations
are closer to the typical Kolmogorov scaling,�u(r) ∼ r1/3, rather than to the Bolgiano–Obukhov scaling
[1], �u(r) ∼ r3/5.

Regarding the anisotropic sectors, Eq. (150) is thedimensional predictionfor the system, consistent
with the anisotropic properties of the buoyancy term, sector by sector.

In [138] theSO(3) decomposition was applied in this system to velocity structure functions (44) and
to objects

G(q,1)(r )= 〈[(u(r )− u(0)) · r̂]q(T (r )− T (0))〉 =
∑
jm

G
(q,1)
jm (r) .

The dimensional matching of Eq. (150) can be extended to any order, giving

S
(p)
jm (r) ∼ rG

(p−2,1)
j−1,m (r) .

Denoting with(q,1)j the anisotropic scaling exponents of the buoyancy terms,G
(q,1)
jm (r) ∼ r

(q,1)j we get
the dimensional estimate


(p)j = 1+ (p−2,1)
j−1 (dimensional prediction) . (151)

In [138] it was shown that this dimensional prediction is not obeyed; the exponents
(n)j appear to be
systematically smaller than prediction (151). Interestingly, enough the log–log plots computed in the
sectorsj = 4,6 show a good qualitative agreement with those calculated in the RKF of Ref.[40] as
can be seen inFig. 21where we compare the projection on thej = 4 sector of structure functions of
different orders. Similar results are obtained forj = 6 sector. These preliminary findings, if confirmed
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curves refer top=2: the best fit exponents which compensate HRB and RKF curves are
(2)4 =1.7 and
(2)4 =1.66, respectively.

Curves in the middle refer to the same quantities but forp= 4: compensation has been obtained with
(4)4 = 2.05 for HRB, and


(4)4 = 2.2 for RKF. Bottom curves refer top = 6: here
(6)4 = 2.3 for HRB, and
(6)4 = 2.5 for RKF. Notice that the curves of
the two flows are compensated with very similar values of the exponents (within 10%). Inset: the same but forj = 4,m = 2,
compensation has been done with the same values used forj = 4,m = 0, to show the independence of the scaling exponents
from the choice of the reference axis labeled withm.

by other independent measurements, would supportuniversality for anisotropic scaling exponents in
three-dimensional turbulence.

7.3. Scaling of longitudinal and transversal structure functions

As discussed in Section 2.6 there exists experimental and numerical data suggesting thatlongitudi-
nal and transversalstructure functions in supposedly isotropic flows show different scaling exponents
[34,67–70]. One needs to distinguish clearly between experimental and numerical data. The former can
never be considered fully isotropic; the best one can do is to try to perform a multi-fit procedure to
clean out sub-leading anisotropic contributions as already explained in detail in Section 6. This fitting
procedure is, of course, affected by experimental errors which cannot be eliminated. Therefore it is quite
dangerous to make any firm conclusion about supposed different scaling exponents of longitudinal and
transversal isotropic scaling on the basis of only experimental data. Numerical data are not much safer.
Here anisotropy can be much better controlled. With isotropic forcing the only source of anisotropy is
the three-dimensional grid whose effect is usually too small to explain possible discrepancies between
longitudinal and transversal scalings. Indeed some state-of-the-art isotropic DNS indicate the possibil-
ity of different scaling exponents both for inertial range structure functions[69] and for coarse-grained
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Table 4
Measured values of the longitudinal (first raw) and transverse (second raw) scaling exponents atRe� = 460 taken from[69]

n 2 4 6 8 10


(n)0 0.701 (14) 1.29 (3) 1.77 (4) 2.17 (7) 2.53 (9)


(n)0 0.709 (13) 1.27 (2) 1.67 (4) 1.93 (9) 2.08 (18)

One should note that the scaling range displayed by the scaling plots in[69] are relatively short, indicating that finiteReeffects
may still be rather important.

energy and enstrophy measures[67,156]. In Table 4we summarize the best-fit values of the scaling
exponents measured in[69]. The small-scale fluctuations were probed[156] by comparing the scaling
of the coarse-grained energy dissipation over a box of sizer, ε̃(r) (Eq. (17)), and of the coarse-grained
enstrophy dissipation:�(r, x)= (1/r3)

∫
|y|<r

dy�(x+ y) where�(x) is the local enstrophy dissipation.
Different scaling exponents were measured for the averaged quantities,〈(ε̃)p(r)〉, 〈�p(r)〉. Being scalar
quantities, in isotropic ensembles these should not have different exponents. From the theoretical point of
view, different scaling exponents of longitudinal and transverse structure functions in isotropic ensembles
are unlikely. In the language of theSO(3) decomposition, it amounts to the scaling exponents depending
on theq-index which labels different basis functions with the same rotation properties. In the exactly
solvable models examined before, this never happened. In general, one would need a different symmetry
to lift the degeneracy of differentq dependent basis functions. At this point this problem remains some-
how unsettled. New numerical tests on larger grids and/or with a better resolved viscous behavior are
needed before a firm statement can be made.

7.4. Anisotropies in decaying turbulence

Decaying turbulence has attracted the attention of various communities and is often considered in
experimental, numerical and theoretical investigations[1,5,157]. It is in fact quite common that even
experiments aimed at studying stationary properties of turbulence involve processes of decay. Important
examples are provided by a turbulent flow behind a grid (see[158]and references therein) or the turbulent
flow created at the sudden stop of a grid periodically oscillating within a bounded box[159]. In the former
case, turbulence is slowly decaying going farther and farther away from the grid and its characteristic
scale becomes larger and larger (see[158] for a thorough experimental investigation). Whenever there
is sufficient separation between the grid-sizeLin and the scale of the tunnel or the tankL0?Lin, a
series of interesting phenomenological predictions can be derived. For example, the decay of the two-
point velocity correlation function, for both isotropic and anisotropic flows, can be obtained under the
so-called self-preservation hypothesis (see[1, Chapter XVI]). That posits the existence of rescaling
functions allowing one to relate correlation functions at different spatial and temporal scales. By inserting
the rescaling function into the equations of motion, asymptotic results can be obtained both for the final
viscosity-dominated regime and for the intermediate asymptotic when non-linear effects still play an
important role.

Here, we review some recent attempts to investigate the decay of three-dimensional homogeneous and
anisotropic turbulence by direct numerical simulations of the Navier–Stokes equations in a periodic box
[160] for both short and large times. The initial conditions are taken from the stationary ensemble of the
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random Kolmogorov flow discussed in the previous subsection. Here the correlation length-scale of the
initial velocity fieldLin is of the order of the size of the boxL0 ≈ Lin.

On the one hand, one is interested in the long-time decay regime where the typical interesting questions
are: (i) how do global quantities, such as single-point velocity and vorticity correlations, decay? (ii) What
is the effect of the outer boundary on the decay laws? (iii) Do those quantities keep track of the initial
anisotropy? (iv) As for the statistics of velocity differences within the inertial range of scales, is there
a recovery of isotropy at large times? (v) If so, do strong fluctuations get isotropic at a faster/slower
rate with respect to those of average intensity? (vi) Do anisotropic- and isotropic-fluctuations decay
self-similarly? (vii) If not, do strong fluctuations decay slower or faster than typical ones? On the other
hand, the interest in the early stages of the decay is led by a hope of establishing a link between the
small-scale velocity statistics in this phase and in forced turbulence. If such links existed, they would
shed additional light on the universality of forced turbulence. As turbulence decays, the effectiveRe
decreases, while the viscous characteristic scale and time increase. In[160] an offline analysis at fixed
multiples{0,1,10,102,103,104,105,106} �0 of the initial large-scale eddy turnover time�0=L0/u

t=0
rms

was performed.
A first hint on the restoration of isotropy at large times can be extracted from the analysis of single-point

quantities as

Eil = ui(x, t)ul(x, t), �il = �i(x, t)�l(x, t).

Here with· · ·we denote the average over spatial coordinates only, whereas〈· · ·〉 indicates the average over
both initial conditions and space. The symmetric matricesEil(t) and�il(t) can be diagonalized at each
time-step and the eigenvaluesE1(t), E2(t), E3(t) and�1(t),�2(t),�3(t) can be extracted. The typical
decay ofEi(t) and�i(t) for i=1, . . . ,3 is shown inFig. 22. During the self-similar stage,t ∈ [10,106],
the energy eigenvalues fall off asE{1,2,3} ∼ t−2, as expected for the decay in a bounded domain[158,161].
The enstrophy eigenvalues,�{1,2,3} decay ast−12/5 as predicted from a simple dimensional argument
[160]. To focus on the process of recovery of isotropy in terms of global quantities one may track the
behavior of two sets of observables:

�ilE(t)= 〈Ei(t)− El(t)〉
〈Ei(t)+ El(t)〉 , �il�(t)= 〈�i(t)− �l(t)〉

〈�i(t)+ �l(t)〉 ,

which vanish for isotropic statistics. Their rate of decay is therefore a direct measurement of the return to
isotropy. The energy matrixEil is particularly sensitive to the large scales while small-scale fluctuations
are sampled by�il . As seen fromFig. 23, both large and small scales begin to isotropize after roughly
one eddy turnover time and become fully isotropic (within statistical fluctuations) after 100 eddy turnover
times. However, small scales show an overall degree of anisotropy much smaller than the large scales.

Concerning small-scales properties, in[160]a simple anisotropic generalization of the self-preservation
hypothesis (see e.g. Ref.[5]) was proposed:

S
(n)
jm(r, t)= V

(n)
jm (t)f

(n)
jm (r/Ljm(t)) .

Here withV (n)
jm (t) we take explicitly into account the fact that large-scale velocity properties may depend

in a non-trivial way on both(j,m) and the ordern. Furthermore,Ljm(t) accounts for the possibility
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that the characteristic length scale depend on theSO(3) sector. In analogy with the observations made in
the stationary case[10,18,33,34,38–40,60]a scaling law was postulated:

S
(n)
jm(r, t) ∼ a

(n)
jm(t)

(
r

Ljm(t)

)
(n)j

. (152)

The time behavior is encoded in both the decay of the overall intensity, accounted by the prefactors
a
(n)
jm(t), and the variation of the integral scalesLjm(t). The representation Eq. (152) is the simplest one

fitting the initial time statistics fort = 0 and agreeing with the evolution given by the self-preservation
hypothesis in the isotropic case. The power-law behavior forf

(n)
jm (r/Ljm(t)) can be expected only in

a time-dependent inertial range of scales	(t)>r>L(t). As for the exponents appearing in (152), their
values are expectedly the same as in the stationary case. Concerning the time evolution, it seems difficult
to disentangle the dependence due to the decay ofa

(n)
jm(t) from the one due to the growth of the integral

scaleLjm(t). The existence of a running reference scale,Ljm(t) introduces some non-trivial relations
between the spatial anomalous scaling and the decaying time properties, and those relations might be
subject to experimental verification. In the case discussed in[160], the fact that the initial condition has
a characteristic length-scale comparable with the box size, simplifies the matter. Indeed, we expect that
Ljm(t) ≈ L0, and the decay is due only to the fall-off ofa

(n)
jm(t). An obvious shortcoming is that the width

of the inertial rangeL0/	(t) shrinks monotonically in time, thereby limiting the possibility of precise
quantitative statements.
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7.4.1. Long time decay
A quantitative way to define the temporal rate of recovery of isotropy at a fixed scale in the inertial

range is given by the dimensionless ratio

�(n)
jm(r, t) ≡

S
(n)
jm(r, t)

S
(n)
0,0(r, t)

∼ t
−�(n)

j . (153)

In Fig. 24, we plot�(n)
jm(r, t) atr =80 for structure functions of ordern=2,4,6 and for the most intense

anisotropic sector,(j,m) = (4,0). All anisotropic sectors, for all measured structure functions, decay
faster than the isotropic one. The measured slope in the decay is about�(n)

j ∼ 0.3 for all n, within the
statistical errors. Note that these results agree with the simple picture that the time dependence in (152)
is entirely carried by the prefactorsa(n)jm(t) and the value of the integral scalesLjm(t) is saturated at the
size of the box. Indeed, by assuming that large-scale fluctuations are almost Gaussian we have that the
leading time dependence ofa(2n)jm is given bya(2)jma

(2n−2)
00 . For the isotropic sector,a(2n)00 ∼ (a

(2)
00 )

n, and

plugging that in (153), one gets:�(n)
jm(r, t) ∼ a

(2)
jm(t)/a

(2)
00 (t) ∼ t−� with � ∼ 0.3(±0.1) independent of

n. The quality of data is insufficient to detect possible residual effects due toLjm(t), which would make

�(n)
j depend onn andj because of spatial intermittency.
Let us denote withP(�, r ; t) the probability to observe a given longitudinal fluctuation,�u�(r, t)= �

in the directionr at a given time,t. For any given fixed value� and for any given time,t, we can project
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P(�, r ; t) on theSO(3) basis functions:

P(�, r ; t)=
∞∑
j=0

j∑
m=−j

Pjm(r,�; t)Yjm(r̂) , (154)

where now the projection,Pjm(r,�; t) play the role of aneffective PDFfor eachSO(3) sector. The
projection of any longitudinal structure function,S(n)(r , t) on any sector,(j,m) can be reconstructed
from the corresponding projection of the PDF on the same sector,Pjm(r,�; t), by averaging over all
possible�:

S
(n)
jm(r, t)=

∫
d��nPjm(r,�; t)

which establish the link between decompositions (44) and (154).
The interesting fact that the decay properties of the anisotropic sectors are almost independent ofn

indicates that a non-trivial time dependence in the shape of the PDF’sPjm(r,�; t) for j >0 must be
expected. The most accurate way to probe the rescaling properties ofPjm(r,�; t) in time is to compute
the generalized flatness:

K
(n)
jm(r, t) ≡

S
(n)
jm(r, t)

(S
(2)
jm(r, t))

n/2
∼ t

�(n)j .
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Were the PDF projection in the(j,m) sector self-similar fort?�0, thenK(n)
jm(r, t) would tend to constant

values. This is not the case for anisotropic fluctuations, as it is shown inFig. 25. The curvesK(n)
jm(r, t)

are collected for two fixed inertial range separations,r = 80 and 40 (inset), for two different orders,
n= 4,6 and for both the isotropic and one of the most intense anisotropic sectors(j = 4,m= 0) . The
isotropic flatness tends toward a constant value for larget. Conversely, its anisotropic counterparts are
monotonically increasing witht, indicating a tendency for the anisotropic fluctuations to become more
and more intermittent as time elapses. Also the behavior inFig. 25is in qualitative agreement with the
observation previously made that all the time dependence can be accounted for by the prefactorsa

(n)
jm(t).

Indeed, assuming that the length scalesLjm(t) have saturated and that the large-scale PDF is close to

Gaussian, it is easy to work out the predictionK
(n)
jm(r, t) ∼ t−�(1−n/2), i.e.�(n)j =�(n/2−1). We conclude

this section with a brief summary of the results. It was found that isotropic fluctuations persist longer than
anisotropic ones, i.e. there is a time-recovery, albeit slower than predicted by dimensional arguments,
of isotropy during the decay process. It was also found that isotropic fluctuations decay in an almost
self-similar way while the anisotropic ones become more and more intermittent. Qualitatively, velocity
configurations get more isotropic but anisotropic fluctuations become, in relative terms, more “spiky”
than the isotropic ones as time elapses.

7.4.2. Short-time decay
It is interesting to note that it is possible to relate the small-scale universal properties of forced turbulent

statistics to those of short-time decay for an ensemble of initial configurations[160]. As already remarked,
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one cannot expect an universal behavior for all statistical observables, as the very existence of anomalous
scaling is the signature of the memory of the boundaries and/or the external forcing throughout all the
scales. Indeed, the main message we want to convey here is that only the scaling exponents of both
isotropic and anisotropic small-scale fluctuations are universal, at least for forcing concentrated at large
scales. The prefactors are not expected to be so. There is therefore no reason to expect that quantities such
as the skewness, the kurtosis and in fact the whole PDF of velocity increments or gradients be universal.

This is the same situation that we discussed in great detail in previous sections for the passive trans-
port of scalar and vector fields. However, carrying over the analytical knowledge developed for linear
hydrodynamic problems involves some non-trivial, yet missing, steps. For the Navier–Stokes dynamics,
linear equations of motion appear when we consider the whole set of correlation functions as discussed
in Section 4.3. These equations can be rewritten in a schematic form:

�tC
(n) = �(n+1)C(n+1) + �D(n)C(n) + F (n) , (155)

where�(n+1) is the integro-differential linear operator coming from the inertial and pressure terms,C(n)

is a shorthand notation for a generic(n)th-order correlator andD(n) is the linear operator describing
dissipative effects. Finally,F (n) is the correlator involving increments of the large-scale forcingf and of
the velocity field. The balance between inertial and injection terms cannot lead to anomalous scaling.
A natural possibility is that a mechanism similar to the one identified in linear transport problems be at
work in the Navier–Stokes case as well. The anomalous contributions to the correlators would then be
associated with statistically stationary solutions of the unforced equations (155). The scaling exponents
would a fortiori be independent of the forcing and thus universal. As for the prefactors, the anomalous
scaling exponents are positive and thus the anomalous contributions grow at infinity. They should then
be matched at the large scales with the contributions coming from the forcing to ensure that the resulting
combinations vanish at infinity, as required for correlation functions. The aim here is not to prove the
previous points but rather to test whether they fail: the Navier–Stokes equations, being integro-differential
and non-local, might directly couple inertial and injection scales and spoil the argument. This effect might
be particularly relevant for anisotropic fluctuations where infrared divergences may appear in the pressure
integrals (see Section 5.3). In order to investigate the previous point, we performed two sets of numerical
experiments in decay.

The first set, A, is of the same kind as in the previous section, i.e. we integrated the unforced
Navier–Stokes equations with initial conditions picked from an ensemble obtained from a forced
anisotropic stationary run. Statistical observables are measured as anensembleaverage over the dif-
ferent initial conditions. The ensemble at the initial time of the decay process therefore coincides with
the stationary state in forced runs. If correlation functions are indeed dominated at small scales by sta-
tistically stationary solutions of the unforced equations then the field should not decay. Specifically, the
field should not vary for times smaller than the large-scale eddy turnover time�0. Those are the times
when the effects of the forcing terms start to be felt. Note that this should hold at all scales, including the
small ones whose turnover times are much faster than�0.

The second set of numerical simulations (set B) takes the same initial conditions but for the random
scrambling of the phases:ui(k) → Pil(k)u�(k)exp(i�l(k)), with �l(k) i.i.d. random variables. In this
way, the spectrum and its scaling exponent are preserved but the wrong organization of the phases is
expected to spoil the statistical stationarity of the initial ensemble. As a consequence, two different
decays are expected for the two sets of initial conditions. In particular, contrary to setA, setB should
vary at small scales on times of the order of the eddy turnover times�r ∼ r2/3. This is exactly what has
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Fig. 26. Top: temporal decay of the second-order anisotropic structure functionS
(2)
40 (r, t), rescaled by its value att=0. Herer=30,

inside the inertial range. The two curves refer to the time evolution of the structure function starting from the forced-stationary
velocity fields (squares, setA) and from the randomly dephased velocity fields (circles, setB). Time is normalized by the integral
eddy turnover time. Notice that for setB we observe changes on a time scale faster than the integral eddy turnover time. That
is to be contrasted with the case A, where structure functions are strictly constant in time up to an integral eddy turnover time.
Bottom: the same curves but for the fourth-order structure function.

been found in the numerical simulations for both isotropic and anisotropic statistics as can be seen for
the anisotropic case inFig. 26, where the temporal behavior of longitudinal structure functions of order
2 and 4 is shown. The scaling exponents of the contributions responsible for the observed behavior at
small scales are thus forcing independent.

To conclude, the data presented here support the conclusion that non-local effects peculiar to the
Navier–Stokes dynamics do not spoil arguments on universality based on analogies with passive turbulent
transport. The picture of the anomalous contributions to the correlation functions having universal scaling
exponents and non-universal prefactors follows.

8. Concluding discussion

In this review, we presented a mathematical framework in which anisotropy in turbulence can be
studied, and we have tested its utility in the context of experimental analysis, numerical simulations
and analytical models. The basic idea is to express the various statistical quantities of turbulence (e.g.,
structure functions, correlation functions) in terms of their projections on the different sectors of the
SO(3) group.

The utility of theSO(3) decomposition should be assessed in two main aspects. The first aspect is its
functionality as a tool for characterizing anisotropy, whereas the second, and deeper aspect, is its physical
relevance and the theoretical and analytical advantages that are gained by using it.
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As a tool for describing anisotropy, theSO(3) decomposition is probably the most natural and general
method. It is ofhigh resolution—it subdivides the observed anisotropy into different sectors—the(j,m)

sectors. The weights of the various sectors give us a fine resolution of the anisotropy structure. Instead
of having one measure for anisotropy (e.g., the overall percentage of anisotropy), we have an infinite set
of numbers that compose a detailed profile of the anisotropy structure.

TheSO(3) decomposition is also verygeneral. It is applicable to any physical observable that has a
well-defined transformation under rotations. These can be, for example, correlation functions, structure
functions or Green’s functions (response functions). The observables themselves may depend on any
number of space coordinates or even be space independent. They may also be scalars, vectors or tensors.
Any such quantity can be presented as a sum of parts that belong to the different(j,m) sectors of the
rotation group. Additionally, since theSO(3) decomposition is invariant to isotropic operations, it is
invariant to the most common operations that we use. For example, to obtain thenth-order longitudinal
structure function we can take the fullnth-order structure function (which is a tensor) and contract it with
n unit vectors in the direction of the separation distance. Since this operation is linear and isotropic, it
will preserve the(j,m) sectors of the full structure function. That is, the(j,m) sector of the full structure
function will be transformed into the same(j,m) sector of the longitudinal structure functions. The
same thing happens for operations such as differentiations (for example when we look at moments of the
gradient fields), space averaging, time averaging, coordinate fusion, etc. From the pure theoretical point
of view, the first and most obvious advantage of using theSO(3) decomposition is its elegance and the
overwhelming simplification that it offers in analytical calculations. TheSO(3) decomposition may also
have a deeper physical justification if it produces universal quantities such as distinct scaling behavior in
the anisotropic sectors. There are several different pieces of evidence that suggest that this is indeed the
case. Experimental results clearly show that a better scaling is achieved if we take higherj components
into account. Additionally, different experimental setups seem to lead to the same numerical values of
the anisotropic exponent. This is a strong support for the hypothesis that the anisotropic sectors of the
structure functions have universal exponents. Another support for the idea that theSO(3) decomposition
exposes universal quantities, comes from numerical simulations. In DNS, theSO(3) decomposition can
be performed directly (since the velocity field is accessible in every point in space and time) which makes
the results much less ambiguous. We clearly see that even in the very moderate Reynolds numbers of
the simulations, a scaling behavior is detected once we use theSO(3) decomposition. In some cases,
without theSO(3) decomposition, no scaling behavior is seen at all. Furthermore, the resulting exponents
in the isotropic sector are remarkably similar to the experimental values which are measured at very high
Reynolds numbers. This is a strong indication that at least the isotropic sector has a universal profile, and
therefore by disentangling it from the anisotropic sectors we get universal results. In other sectors of the
rotation group, the scaling behavior is not as good, and in some sectors there is no scaling at all. However,
in those sectors where scaling was detected, the scaling exponents seem to agree with the theoretical and
experimental predictions. Sectors with samej and differentms had the same scaling exponents (when
scale invariance was observed). And finally, all exponents increased as a function ofn (order of the
structure function) as well asj. It is still not clear whether the “bad”, non scale-invariant behavior that
was detected in some sectors, is a result of the poor Reynolds numbers of the simulations, or is a genuine
effect that tells us that the foliation picture is incomplete. A further research with higher resolution is
probably needed to settle this issue. In the Navier–Stokes case one can prove a “weak foliation”. Weak
foliation is an approximate foliation that happens in the case of weak anisotropy, when we linearize the
anisotropic part of the theory around its isotropic part. In such case, the linearized anisotropic part of
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the theory is subject to a linear and isotropic equation whose kernel contains the isotropic solution, and
hence foliation occurs. This is a very robust approximation since it holds for virtually any non-linear
and isotropic theory in the case of weak anisotropy. Additionally, we know that as the Reynolds number
increases, the statistics becomes more and more isotropic and therefore the linear approximation becomes
better and better.

The SO(3) decomposition has a physical relevance also in the presence of strong anisotropy. The
structure functions of the Navier–Stokes equations satisfy a hierarchy of linear equation which serve as
infinitely many constraints that are invariant to all rotations. These constraints exist independently of
the amount of anisotropy in the system. Their linearity and invariance under rotation lead to foliation
and hence one can discuss them in every anisotropic sector independently. In some sectors, they are
sufficient to determine the full solution, whereas in others they can reveal some general properties of the
solution. For example, the isotropic sector of the third-order structure function is completely determined
by the different constraints, and is given by the well-known 4/5 law of Kolmogorov. Note that because
of foliation, this is true also in the presence of anisotropy, which means that the 4/5 law holds also in
the isotropic sector of anisotropic turbulence. In thej = 2 sectors, on the other hand, the third-order
structure function is given by two undetermined scalar functions, whereas in thej = 4,6, . . . it is given
by three. Another example is thej = 1 sectors in the second-order correlation function, which must all
vanish.

To conclude, the framework of theSO(3) decomposition provides an elegant and efficient way to
describe anisotropy in turbulence. It also greatly simplifies many analytical calculations that involve
anisotropic quantities, mainly through the mechanism of foliation. This mechanism is present in simplified
models of turbulence, and may also be valid approximately in Navier–Stokes turbulence. It predicts that the
anisotropic sectors of the statistics have universal properties such as scaling exponents. Further research
is needed to measure accurately these anisotropic exponents in experiments as well as in numerical
simulations.

There are many issues that await future research. A quantitative computation of the anisotropic expo-
nents in Navier–Stokes turbulence from first principles may very well be an illusive goal. Nevertheless,
there exist important contexts where a careful study of the anisotropic effects may lead to a dramatic im-
provement of understanding the underlying physics. An important example is magneto-hydrodynamics
(MHD), where the magnetic field influences the dynamics of the velocity field through the Lorentz force.
Interesting simulations of MHD with a prescribed, mean magnetic field[162] (which serves to break the
isotropy) indicate that the magnetic and velocity structure functions exhibit scaling properties that depend
strongly on the intensity of the magnetic field. This apparently contradicts the universality hypothesis.
We propose that a carefulSO(3) decomposition may shed light on this interesting issue. In addition, as-
trophysical flows[163,164]are often subject to strong anisotropy and inhomogeneity which are induced
by the mean field. For instance in the solar wind it was stated that the spectrum of magnetic fluctuations
depends on the distance from the sun[165–168]. Recent data analysis of solar wind from the Ulysses
spacecraft[169] succeeded to disentangle the isotropic from the anisotropic contributions, supporting the
universality hypothesis. Other cases that await further study include systems in which the anisotropy is
not just a perturbation of the isotropic state such as thermal convection. Here the anisotropy and inhomo-
geneity are so important that the dynamics is driven to very different scaling statistics (characterized by
e.g. the Bolgiano scaling exponents). Similarly in wall-bounded flows very close to the wall one expect
strong deviations from the isotropic statistics. Nevertheless, theSO(3) decomposition should be useful
to at least disentangle the isotropic sector from the rest.
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Appendix A. The general form of the second-rank tensor

In this appendix we discuss the general structure of the second-rank correlation functions

F ��(r ) ≡ 〈u�(x + r )u�(x)〉 . (A.1)

In (A.1) homogeneityof the flow is assumed, but not isotropy. Note that this object is more general than
the structure functionS�� in being non-symmetric in the indices, and having no definite parity. We wish
to find the basis functionsB��

q,jm(r̂ ), with which we can representF ��(r ) in the form

F ��(r )=
∑
q,jm

aq,jm(r)B
��
q,jm(r̂ ) (A.2)

and derive some constraints among the functionsaq,jm(r) that result from incompressibility. We shall
see, that due to the isotropy of the incompressibility conditions, the constraints are amongaq,jm(r) with
thesamej,m only.

We begin by analyzing the incompressibility condition: An incompressible flow with constant density
is characterized by the relation:��u

�(x, t)=0 as a result, one immediately gets the following constraints
onF ��(r ):

��F
��(r )= 0, ��F

��(r )= 0.

Plugging the trial tensor (A.2) into the last two equations wee obtain 2 equations connecting the different
aq,jm:

��

∑
q,jm

aq,jm(r)B
��
q,jm(r̂ )= 0, ��

∑
q,jm

aq,jm(r)B
��
q,jm(r̂ )= 0 . (A.3)

We first note that the differentiation action is isotropic. As a result, ifT ��(r ) is some arbitrary tensor with
a definitej,m transformation properties, then the tensor��T

��(r ) will have the samej,m transformation
properties. Components with differentj,m are linearly independent. Therefore equations (A.3) should
hold for eachj,m separately.
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Next, we observe that (A.3) are invariant under the transformationF �� −→ F ��. As a result, the
symmetric and anti-symmetric parts ofF �� should satisfy (A.3) independently. To see that, let us write
F �� as a sum of a symmetric term and an anti-symmetric term:F �� = F

��
S + F

��
A , we then get

��F
�� = ��F

��
S + ��F

��
A = ��F

��
S − ��F

��
A = 0 ,

��F
�� = ��F

��
S + ��F

��
A = 0

from which we conclude:��F
��
S = ��F

��
A =0. Finally, (A.3) is invariant under the transformationF ��(r )

−→ F ��(−r ) and as a result the odd parity and the even parity parts ofF �� should fulfill (A.3) indepen-
dently. We conclude that a necessary and sufficient condition for (A.3) to hold is that it holds separately
for parts with definitej,m, definite symmetry in the�, � indices and a definite parity inr :

��

∑
q

aq,jm(r)B
��
q,jm(r̂ )= 0 ,

where the summation is overq such thatB��
q,jm has a definite indices symmetry and a definite parity.

According to (37) we can write theseB��
q,jm as:

(1) (−)j parity, symmetric tensors:

• B
��
1,jm(r̂ ) ≡ r−j����jm(r),

• B
��
7,jm(r̂ ) ≡ r−j [r��� + r���]�jm(r),

• B
��
9,jm(r̂ ) ≡ r−j−2r�r��jm(r),

• B
��
5,jm(r̂ ) ≡ r−j+2�����jm(r).

(2) (−)j parity, anti-symmetric tensors:

• B
��
3,jm(r̂ ) ≡ r−j [r��� − r���]�jm(r).

(3) (−)j+1 parity, symmetric tensors

• B
��
8,jm(r̂ ) ≡ r−j−1[r�ε���r��� + r�ε���r���]�jm(r),

• B
��
6,jm(r̂ ) ≡ r−j+1[ε���r����

� + ε���r����
�]�jm(r).

(4) (−)j+1 parity, anti-symmetric tensors:

• B
��
4,jm(r̂ ) ≡ r−j−1ε���r��jm(r),

• B
��
2,jm(r̂ ) ≡ r−j+1ε������jm(r).

In order to differentiate these expressions we can use the following identities:

r���r

Yjm(r̂ )= 
r
Yjm(r̂ ) ,

����r

Yjm(r̂ )= [
(
+ 1)− j (j + 1)]r
−2Yjm(x̂)



148 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43–164

which give rise to

r����jm(r )= j�jm(r ) ,
�����jm(r )= 0 .

From this point, it is a matter of simple (though somewhat lengthy) algebra to derive the differential
constraints amongaq,jm(r). The results are as follows

(1) q ∈ {1,7,9,5}:
a′1,jm(r)− jr−1a1,jm + ja′7,jm − j2r−1a7,jm + a′9,jm + 2r−1a9,jm = 0 ,

r−1a1,jm + a′7,jm + 3r−1a7,jm + (j − 1)a′5,jm − (j2− 3j + 2)r−1a5,jm = 0 . (A.4)

(2) q ∈ {3}:
a′3,jm − jr−1a3,jm = 0 ,

a′3,jm + r−1a3,jm = 0 . (A.5)

These equations have no solutions other than:a3,jm(r) = 0.
(3) q ∈ {8,6}:

a′8,jm + 3r−1a8,jm + (j − 1)a′6,jm − (j2− 2j + 1)r−1a6,jm = 0 . (A.6)

(4) q ∈ {4,2}:
r−1a4,jm − a′2,jm + (j − 1)r−1a2,jm = 0 . (A.7)

There are obviously more unknowns than equations, since we merely exploited the incompressibility
conditions. Nevertheless, we believe that the missing equations that arise from the dynamical hierarchy
of equations will preserve the distinction betweenaq,jm of differentj,m (again, due to the isotropy of
these equations). Note also, that the above analysis holds also for the second-order structure function

S��(r ) ≡ 〈[u�(x + r )− u�(x)][u�(x + r )− u�(x)]〉 .

Only that in this case we should only consider the representationsq = 1,7,9,5 for evenj and the
representationsq = 8,6 for oddj. This follows from the fact thatS��(r ) is symmetric with respect to its
indices and it has an even parity inr . Also, in that case, it is possible to go one step further by assuming a
specific functional form for theaq,jm(r). We know that theS��(r ) is expected scale in the inertial range,
and we therefore mayassume:

aq,jm(r) ≡ cq,jmr

(j)2 ,

wherecq,jm are just numerical constants. If we now substitute this definition into Eqs. (A.4, A.6), we get
a set of linear equations among thecq,jm. These relations can be easily solved and give us two possible
tensors for evenj (q = 1,7,9,5) and one tensor form for oddj (from q = 8,6). This kind of approach
was taken in the two-probes experiment which is described in Section 6.
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Appendix B. Anisotropy in d-dimensions

To deal with anisotropy ind-dimensions we need classify the irreducible representations of the group
of all d-dimensional rotations,SO(d) [170], and then to find a proper basis for these representations. The
main linear space that we work in (the carrier space) is the space of constant tensors withn indices. This
space possesses a natural representation ofSO(d), given by the well known transformation of tensors
underd-dimensional rotation.

The traditional method to find a basis for the irreducible representations ofSO(d) in this space, is
using the Young tableaux machinery on the subspace of traceless tensors[170,171]. It turns out that in the
context of the present work, we do not need the explicit structure of these tensors. Instead, all that matters
are some relations among them. A convenient way to derive these relations is to construct the basis tensors
from functions on the unitd-dimensional sphere which belong to a specific irreducible representation.
Here also, the explicit form of these functions in unimportant. All that matters for the calculations is the
action of the Laplacian operator on these functions.

Let us therefore consider first the spaceSd of functions over the unitd-dimensional sphere. The
representation ofSO(d) over this space is naturally defined by

OR�(û) ≡ �(R−1û) , (B.1)

where�(û) is any function on thed-dimensional sphere, andR is ad-dimensional rotation.
Sd can be spanned by polynomials of the unit vectorû. Obviously (B.1) does not change the degree

of a polynomial, and therefore each irreducible representation in this space can be characterized by an
integerj = 0,1,2, . . . , specifying the degree of the polynomials that span this representation. At this
point, we cannot rule out the possibility that some other integers are needed to fully specify all irreducible
representations inSd and therefore we will need below another set of indices to complete the specification.

We can now choose a basis of polynomials{Yj,�(û)} that span all the irreducible representations
of SO(d) overSd . The index� counts all integers other thanj needed to fully specify all irreducible
representations, and in addition, it labels the different functions within each irreducible representation.

Let us demonstrate this construction in two and three dimensions. In two dimensions� is unneeded
since all the irreducible representation are one-dimensional and are spanned byYj (û) = eij� with �
being the angle between̂u and the vector̂e1 ≡ (1,0). Any rotation of the coordinates in an angle�0
results in a multiplicative factor ei�0. It is clear thatYj (û) is a polynomial inû sinceYj (û) = [û · p̂]j
wherep̂ ≡ (1, i). In three dimensions�=m wherem takes on 2j + 1 valuesm=−j,−j + 1, . . . , j .
HereYj,m ∝ eim�Pm

j (cos�) where� and� are the usual spherical coordinates, andPm
j is the associated

Legendre polynomial of degreej −m. Obviously, we again have a polynomial inû of degreej.
We now wish to calculate the action of the Laplacian operator with respect tou on theYj,�(û).

We prove the following identity:

u2����Yj,�(û)=−j (j + d − 2)Yj,�(û) . (B.2)

One can easily check that ford=3 (B.2) gives the factorj (j +1), well known from the theory of angular
momentum in quantum mechanics. To prove this identity for anyd, note that

|u|2−j�2|u|jYj,�(û)= 0 . (B.3)

This follows from the fact that the Laplacian is an isotropic operator, and therefore is diagonal in the
Yj,�. The same is true for the operator|u|2−j�2|u|j . But this operator results in a polynomial in̂u of
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degreej − 2, which is spanned byYj ′,�′ such thatj ′�j − 2. Therefore the RHS of (B.3) must vanish.
Accordingly, we write

�2|uj |Yj,�(û)+ 2��|uj |��Yj,� + |uj |�2Yj,�(û)= 0 . (B.4)

The second term vanishes since it contains a radial derivativeu��� operating onYj,�(û) which depends
on û only. The first and third terms, upon elementary manipulations, lead to (B.2).

Having theYj,�(û) we can now construct the irreducible representations in the space of constant
tensors. The method is based on acting on theYj,�(û) with the isotropicoperatorsu�, �� and���. Due to
the isotropy of the above operators, the behavior of the resulting expressions under rotations is similar to
the behavior of the scalar function we started with. For example, the tensor fields���Yj,�(û), ����Yj,�(û)

transform under rotations according to the(j, �) sector ofSO(d).
Next, we wish to find the basis for the irreducible representations of the space of constant and fully

symmetric tensors withn indices. We form the basis

B
�1,...,�n
n,j,� ≡ ��1 . . . ��nunYj,�(û), j�n . (B.5)

Note that whenj and n are evenB�1,...,�n
j,�,n no longer depends on̂u, and is indeed fully symmetric by

construction. Simple arguments can also prove that this basis is indeed complete, and spansall fully
symmetric tensors withn indices. Other examples of this procedure for the other spaces are presented
directly in the text.

Finally, let us introduce two identities involving theBn,j,�. The first one is

��1�2B
�1,...,�n
n,j,� = zn,jB

�3,...,�n
n−2,j,� , (B.6)

zn,j = [n(n+ d − 2)− j (j + d − 2)] . (B.7)

It is straightforward to derive this identity using (B.2). The second identity is∑
i �=j

��i�j B
{�m},m �=i,j
n−2,j,� = B

�1,...,�n
n,j,� , j�n− 2 . (B.8)

This identity is proven by writingun in (B.5) asu2un−2, and operating with the derivative onu2. The
term obtained asu2��1 · · · ��nun−2Yj,�(û) vanishes because we haven derivatives on a polynomial of
degreen − 2. It is worthwhile noticing that these identities connect tensors from two different spaces.
The space of tensors withn indices and the space of tensors withn − 2 indices. Nevertheless, in both
spaces, the tensors belong to the same(j, �) sector of theSO(d) group. This is due to the isotropy of the
contraction with��1�2 in the first identity, and the contraction with��i�j in the second identity.

Appendix C. Full form for the j = 2 contribution for the homogeneous case

In this appendix we focus on the decomposition of second-order tensorial structure functions up to
j = 2. For this purpose we define

S��(r )= S
��
j=0(r)+ S

��
j=2(r) ,
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Thej = 0 is well-known and given explicitly by

S
��
j=0(r )= c0r


(2)0

[
(2+ 
(2)0 )��� − 
(2)0

r�r�

r2

]
, (C.1)

where
(2)0 ≈ 0.68 is the known universal scaling exponent for the isotropic contribution andc0 is an
unknown coefficient that depends on the boundary conditions of the flow. For thej=2 sector which is the
lowest contribution to anisotropy to the homogeneous structure function, them=0 (axisymmetric) terms
were derived from constraints of symmetry, even parity (because of homogeneity) and incompressibility
on the second-order structure function[33]

S
��
j=2,m=0(r )= ar
(2)2

[
(
(2)2 − 2)��� − 
(2)2 (
(2)2 + 6)��� (n · r)2

r2
+ 2
(2)2 (
(2)2 − 2)

r�r�(n · r)2
r4

+([
(2)2 ]2+ 3
(2)2 + 6)n�n� − 
(2)2 (
(2)2 − 2)

r2
(r�n� + r�n�)(n · r)

]

+ br
(2)2

[
−(
(2)2 + 3)(
(2)2 + 2)���(n · r)2+ r�r�

r2
+ (
(2)2 + 3)(
(2)2 + 2)n�n�

+(2
(2)2 + 1)(
(2)2 − 2)
r�r�(n · r)2

r4
− ([
(2)2 ]2− 4)(r�n� + r�n�)(n · r)

]
, (C.2)

where
(2)2 is the universal scaling exponent for thej = 2 anisotropic sector anda andb are independent
unknown coefficients to be determined by the boundary conditions. We would now like to derive the
remainingm=±1, andm=±2 components

S
��
2m =

∑
q

aq,2,mr

(2)2 B

��
q,2,m(r̂ ) .

As usual theq label denotes the different possible ways of arriving at the samej and runs over all such
terms with the same parity and symmetry (a consequence of homogeneity and hence the constraint of
incompressibility). In all that follows, we work closely with the procedure outlined in[27]. Following
the convention in[27] theq’s to sum over areq = {1,7,9,5}. The incompressibility condition��u

� = 0
coupled with homogeneity can be used to give relations between theaq,jm for a given(j,m). That is, for
j = 2,m=−2 . . .2

(
(2)2 − 2)a1,2,m + 2(
(2)2 − 2)a7,2m + (
(2)2 + 2)a9,2,m = 0 ,

a1,2,m + (
(2)2 + 3)a7,2,m + 
(2)2 a5,2,m = 0 . (C.3)

We solve the above equations in order to obtaina5,2,m anda7,2m in terms of linear combinations ofa1,2,m
anda9,2m:

a5,2,m = a1,2m([
(2)2 ]2− 
(2)2 − 2)+ a9,2,m([
(2)2 ]2+ 5
(2)2 + 6)

2
(2)2 (
(2)2 − 2)
,
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a7,2,m = a1,2m(2− 
(2)2 )− a9,2,m(2+ 
(2)2 )

2(
(2)2 − 2)
. (C.4)

Using the above constraints on the coefficients, we are now left with a linear combination of just two
linearly independent tensor formsfor each m

S
��
2m = a9,2,mr


(2)2 [−
(2)2 (2+ 
(2)2 )B
��
7,2,m(r̂)+ 2
(2)2 (
(2)2 − 2)B��

9,2,m(r̂)

+ ([
(2)2 ]2+ 5
(2)2 + 6)B��
5,2,m(r̂)]

+ a1,2,mr

(2)2 [2
(2)2 (
(2)2 − 2)B��

1,2,m(r̂)− 
(2)2 (
(2)2 − 2)B��
7,2,m(r̂)

+ ([
(2)2 ]2− 
(2)2 − 2)B��
5,2,m(r̂)] . (C.5)

The task remains to find the explicit form of the basis tensor functionsB
��
q,2,m(r̂), q∈{1,7,9,5}, m ∈

{±1,±2}:
• B

��
1,2,m(r̂) ≡ r−2���rjY2m(r̂),

• B
��
7,2,m(r̂) ≡ r−2[r��� + r���]r2Y2m(r̂),

• B
��
9,2,m(r̂) ≡ r−4r�r�r2Y2m(r̂),

• B
��
5,2,m(r̂) ≡ ����r2Yjm(r̂).

We obtain them = {±1,±2} basis functions in the following derivation. We first note that it is more
convenient to form a real basis from ther2Y2m(r̂) since we ultimately wish to fit to real quantities and
extract real best-fit parameters. We therefore form ther2Ỹ2k(r̂) (k =−1,0,1) as follows:

r2Ỹ2 0(r̂)= r2Y2 0(r̂)= r2cos2�= r2
3,

r2Ỹ2 −1(r̂)= r2 Y2 −1(r̂)− Y2 +1(r̂)

2

= r2 (cos�− i sin �) cos� sin�+ (cos�+ i sin �) cos� sin�

2
= r2 cos� sin� cos�= r3r1 ,

r2Ỹ2 +1(r̂)= r2Y2 −1(r̂)+ Y2 +1(r̂)

−2i

= r2 (cos�− i sin �) cos� sin�− (cos�+ i sin �) cos� sin�

−2i
= r2 cos� sin� sin �= r3r2 ,

r2Ỹ2 −2(r̂)= r2 Y2 2(r̂)− Y2 −2(r̂)

2i

= r2 (cos 2�+ i sin 2�)sin2 �− (cos 2�− i sin 2�)sin2�

2i
= r2 sin 2� sin2�= 2r1r2 ,
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r2Ỹ2 +2(r̂)= r2Y2 2(r̂)+ Y2 −2(r̂)

2

= r2 (cos 2�+ i sin 2�) sin2�+ (cos 2�− i sin 2�) sin2�

2
= r2 cos 2� sin2�= r2

1 − r2
2 . (C.6)

This new basis ofr2Ỹ2k(r) is equivalent to using ther2Yjm(r) themselves as they form a complete,
orthogonal (in the newk’s) set. We omit the normalization constants for the spherical harmonics for
notational convenience. The subscripts onr denote its components along the 1 (m), 2 (p) and 3 (n)
directions,mdenotes the shear direction,p the horizontal direction parallel to the boundary and orthogonal
to the mean wind direction andn the direction of the mean wind. This notation makes it simple to take
the derivatives when we form the different basis tensors and the only thing to remember is that

��r1= ��(r ·m)=m� ,
��r2= ��(r · p)= p� ,
��r3= ��(r · n)= n� . (C.7)

We use the above identities to proceed to derive the basis tensor functions:

B
��
1,2,−1(r̂)= r−2���(r · n)(r ·m) ,

B
��
7,2,−1(r̂)= r−2[(r�m� + r�m�)(r · n)+ (r�n� + r�n�)(r ·m)] ,

B
��
9,2,−1(r̂)= r−2r�r�(r · n)(r ·m) ,

B
��
5,2,−1(r̂)= n�m� + n�m� ,

B
��
1,2,1(r̂)= r−2���(r · n)(r · p) ,

B
��
7,2,1(r̂)= r−2[(r�p� + r�p�)(r · n)+ (r�n� + r�n�)(r · p)] ,

B
��
9,2,1(r̂)= r−2r�r�(r · n)(r · p) ,

B
��
5,2,1(r̂)= n�p� + n�p� ,

B
��
1,2,−2(r̂)= 2r−2���(r ·m)(r · p) ,

B
��
7,2,−2(r̂)= 2r−2[(r�p� + r�p�)(r ·m)+ (r�m� + r�m�)(r · p)] ,

B
��
9,2,−2(r̂)= 2r−2r�r�(r ·m)(r · p) ,

B
��
5,2,−2(r̂)= 2(m�p� +m�p�) ,

B
��
1,2,2(r̂)= r−2���[(r ·m)2− (r · p)2] ,

B
��
7,2,2(r̂)= 2r−2[(r�m� + r�m�)(r ·m)− (r�p� + r�p�)(r · p)] ,
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B
��
9,2,2(r̂)= r−2r�r�[(r ·m)2− (r · p)2] ,

B
��
5,2,2(r̂)= 2(m�m� − p�p�) . (C.8)

Note that for each dimensionk the tensor is bilinear in some combination of two basis vectors from the
setm, p andn. Substituting these tensors forms into Eq. (C.5) we obtain the full tensor forms for thej =2
non-axisymmetric terms, with two independent coefficients for eachk.

S
��
j=2,k=−1(r)= a9,2,−1r


(2)2 [−
(2)2 (2+ 
(2)2 )r−2[(r�m� + r�m�)(r · n)
+ (r�n� + r�n�)(r ·m)] + 2
(2)2 (
(2)2 − 2)r−4r�r�(r · n)(r ·m)

+ ([
(2)2 ]2+ 5
(2)2 + 6)(n�m� + n�m�)]
+ a1,2,−1r


(2)2 [2
(2)2 (
(2)2 − 2)r−2���(r · n)(r ·m)

− 
(2)2 (
(2)2 − 2)r−2[(r�m� + r�m�)(r · n)+ (r�n� + r�n�)(r ·m)]
+ ([
(2)2 ]2− 
(2)2 − 2)(n�m� + n�m�)] ,

S
��
j=2,k=1(r)= a9,2,1r


(2)2 [−
(2)2 (2+ 
(2)2 )r−2[(r�p� + r�p�)(r · n)
+ (r�n� + r�n�)(r · p)] + 2
(2)2 (
(2)2 − 2)r−4r�r�(r · n)(r · p)
+ ([
(2)2 ]2+ 5
(2)2 + 6)(n�p� + n�p�)]
+ a1,2,1r


(2)2 [2
(2)2 (
(2)2 − 2)r−2���(r · n)(r · p)
− 
(2)2 (
(2)2 − 2)r−2[(r�p� + r�p�)(r · n)+ (r�n� + r�n�)(r · p)]
+ ([
(2)2 ]2− 
(2)2 − 2)(n�p� + n�p�)] ,

S
��
j=2,k=−2(r)= a9,2,−2r


(2)2 [−2
(2)2 (2+ 
(2)2 )r−2[(r�p� + r�p�)(r ·m)

+ (r�m� + r�m�)(r · p)] + 2
(2)2 (
(2)2 − 2)r−4r�r�(r · p)(r ·m)

+ ([
(2)2 ]2+ 5
(2)2 + 6)(m�p� +m�p�)]
+ a1,2,−2r


(2)2 [2
(2)2 (
(2)2 − 2)r−2���(r ·m)(r · p)
− 2
(2)2 (
(2)2 − 2)r−2[(r�p� + r�p�)(r ·m)+ (r�m� + r�m�)(r · p)]
+ 2([
(2)2 ]2− 
(2)2 − 2)(m�p� +m�p�)] ,

S
��
j=2,k=2(r)= a9,2,2r


(2)2 [−2
(2)2 (2+ 
(2)2 )r−2[(r�m� + r�m�)(r ·m)

− (r�p� + r�p�)(r · p)] + 2
(2)2 (
(2)2 − 2)r−4r�r�[(r ·m)2− (r · p)2]
+ 2([
(2)2 ]2+ 5
(2)2 + 6)(m�m� − p�p�)]
+ a1,2,2r


(2)2 [2
(2)2 (
(2)2 − 2)r−2���[(r ·m)2− (r · p)2]
− 2
(2)2 (
(2)2 − 2)r−2[(r�m� + r�m�)(r ·m)− (r�p� + r�p�)(r · p)]
+ 2([
(2)2 ]2− 
(2)2 − 2)(m�m� − p�p�)] . (C.9)
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Table C.1
The number of free coefficients in thej = 2 sector for homogeneous turbulence and for different geometries

k �= �/2, �= �= 3 �= 0, �= �= 3 �= 0, �= �= 1 �= 0, �= 3, �= 1

� �= 0 �= 0 � �= 0 �= 0 � �= 0 �= 0 � �= 0 �= 0

0 2 2 2 2 2 2 2 0
−1 0 0 1 0 1 0 2 2

1 1 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0

2 2 0 2 0 2 2 2 0

Total 5 2 5 2 5 4 6 2

Now we want to use this form to fit for the scaling exponent
(2)2 in the structure functionS33(r) from
data set I where�= �= 3 and the azimuthal angle ofr in the geometry is�= �/2:

S33
j=2,k=−1(r, �, �/2)= 0 ,

S33
j=2,k=1(r, �, �/2)= a9,2,1r


(2)2 [−2
(2)2 (
(2)2 + 2) sin� cos�+ 2
(2)2 (
(2)2 − 2)cos3� sin�] ,

S33
j=2,k=−2(r, �, �/2)= 0 ,

S33
j=2,k=2(r, �, �/2)= a9,2,2r


(2)2 [−2
(2)2 (
(2)2 − 2) cos2 � sin2 �]
+ a1,2,2r


(2)2 [−2
(2)2 (
(2)2 − 2) sin2�] . (C.10)

We see that choosing a particular geometry eliminates certain tensor contributions. In the case of set I
we are left with 3 independent coefficients form �= 0, the 2 coefficients from them = 0 contribution
(Eq. (C.2)), and the single coefficient from the isotropic sector (C.1), giving a total of 6 fit parameters.
The general forms in (C.9) can be used along with thek=0 (axisymmetric) contribution (C.1) to fit to any
second-order tensor object. For convenience, the table shows the number of independent coefficients that
a few different experimental geometries we have will allow in thej = 2 sector. It must be kept in mind
that these forms are to be usedonly when there is known to be homogeneity. If there is inhomogeneity,
then we cannot apply the incompressibility condition to provide constraints in the various parity and
symmetry sectors and we must in general mix different parity objects, using only the geometry of the
experiment itself to eliminate any terms (Table C.1).

Appendix D. The j = 1 component in the inhomogeneous case

D.1. Antisymmetric contribution

We consider the tensor

T ��(r)= 〈(u�(x+ r)− u�(x))(u�(x+ r)+ u�(x))〉.
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This object is trivially zero for� = �. In the experimental setup, we measure at points separated in the
shear direction and therefore have inhomogeneity which makes the object of mixed parity and symmetry.
We cannot apply the incompressibility condition in same parity/symmetry sectors as before to provide
constraints. We must in general use all 7 irreducible tensor forms. This would mean fitting for 7×3=21
independent coefficients plus 1 exponent
(2)1 in the anisotropic sector, together with 2 coefficients in
the isotropic sector. In order to pare down the number of parameter we are fitting for, we look at the
antisymmetric part ofT ��(r)

T̃ ��(r)= T ��(r)− T ��(r)

2
= 〈u�(x)u�(x+ r)〉 − 〈u�(x)u�(x+ r)〉

which will only have contributions from the antisymmetricj = 1 basis tensors. These are

• Antisymmetric, odd parity

B
��
3,1,m = r−1[r��� − r���]rY 1,m(r̂) . (D.1)

• Antisymmetric, even parity

B
��
4,1,m = r−2ε���r�rY 1,m(r̂) ,

B
��
2,1,m = r−2ε�����rY 1,m(r̂) . (D.2)

As with thej = 2 case we form a real basisrỸ1,k(r̂) from the (in general) complexrY 1,m(r̂) in order to
obtain real coefficients in the fits:

rỸ1,k=0(r̂)= rY 1,0(r̂)= r cos�= r3 ,

rỸ1,k=1(r̂)= r
Y1,1(r̂)+ Y1,1(r̂)

2i
= r sin� sin�= r2 ,

rỸ1,k=−1(r̂)= r
Y1,−1(r̂)− Y1,1(r̂)

2
= r sin� cos�= r1 .

And the final forms are

B
��
3,1,0(r̂)= r−1[r�n� − r�n�] ,

B
��
4,1,0(r̂)= r−2ε���r�(r · n) ,

B
��
2,1,0(r̂)= r−2ε���n� ,

B
��
3,1,1(r̂)= r−1[r�p� − r�p�] ,

B
��
4,1,1(r̂)= r−2ε���r�(r · p) ,

B
��
2,1,1(r̂)= r−2ε���p� ,

B
��
3,1,−1(r̂)= r−1[r�m� − r�m�] ,
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B
��
4,1,−1(r̂)= r−2ε���r�(r ·m) ,

B
��
2,1,−1(r̂)= r−2ε���m� . (D.3)

Note: For a givenk the representations is symmetric about a particular axis in the coordinate system
chosen (1=m (shear), 2=p (horizontal), 3=n (mean-wind)) We now have 9 independent terms and we
cannot apply incompressibility in order to reduce the number of independent coefficients in the fitting
procedure. We use the geometric constraints of the experiment to do this.

• � = 0 (vertical separation),� = 3, � = 3

B31
3,1,0(r, �,� = 0) = − sin � ,

B31
2,1,1(r, �,� = 0) = 1 ,

B31
3,1,−1(r, �,� = 0) = cos� . (D.4)

There are no contributions from the reflection-symmetric terms in thej = 0 isotropic sector since these
are symmetric in the indices. The helicity term inj =0 also does not contribute because of the geometry.
So, to lowest order

T̃ ��(r)= T̃
��
j=1(r)= a3,1,0(r)(− sin �)+ a2,1,1(r)+ a3,1,−1(r) cos� .

We have 3 unknown independent coefficients and 1 unknown exponent to fit for in the data.

D.2. Symmetric contribution

We consider the structure function

S��(r)= 〈(u�(x+ r)− u�(x))(u�(x+ r)− u�(x))〉
in the case where we have homogeneous flow. This object is symmetric in the indices by construction,
and it is easily seen that homogeneity implies even parity inr: S��(r) = S��(r) andS��(−r) = S��(r).
We reason that this object cannot exhibit aj = 1 contribution from theSO(3) representation in the
following manner. Homogeneity allows us to use the incompressibility condition:��S

��=0 and��S
��=0,

separately on the basis tensors of a given parity and symmetry in order to give relationships between
their coefficients. For the even parity, symmetric case we have for generalj�2 just two basis tensors
and they must occur in some linear combination with incompressibility providing a constraint between
the two coefficients. However, forj = 1 we only have one such tensor in the even parity, symmetric
group. Therefore, by incompressibility, its coefficient must vanish. Consequently, we cannot have aj =1
contribution for the even parity (homogeneous), symmetric structure function. Now, we consider the case
as available in experiment whenr has some component in the inhomogeneous direction. Now, it is no
longer true thatS��(r) is of even parity and moreover it is also not possible to use incompressibility as
above to exclude the existence of aj = 1 contribution. We must look at allj = 1 basis tensors that are
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symmetric, but not confined to even parity. These are

• Odd parity, symmetric

B
��
1,1,k(r̂) ≡ r−1���rỸ1k(r̂) ,

B
��
7,1,k(r̂) ≡ r−1[r��� + r���]rỸ1k(r̂) ,

B
��
9,1,k(r̂) ≡ r−3r�r�rỸ1k(r̂) ,

B
��
5,1,k(r̂) ≡ r����rỸ1k(r̂) ≡ 0 . (D.5)

• Even parity, symmetric

B
��
8,1,k(r̂) ≡ r−2[r�ε���r��� + r�ε���r���]rỸ1k(r̂) ,

B
��
6,1,k(r̂) ≡ [ε���r����� + ε���r�����]rỸ1k(r̂) ≡ 0 . (D.6)

We use the real basis ofr−1Ỹ1k(r̂) which are formed from ther−1Y1m(r̂). BothB
��
5,1,k(r̂) andB��

6,1,k(r̂)
vanish because of the taking of the double derivative of an object of single power inr. We thus have 4
different contributions to symmetricj = 1 and each of these is of 3 dimensions(k =−1,0,1) giving in
general 12 terms in all:

B
��
1,1,0(r̂)= r−1���(r · n) ,

B
��
7,1,0(r̂)= r−1[r�n� + r�n�] ,

B
��
9,1,0(r̂)= r−3r�r�(r · n) ,

B
��
8,1,0(r̂) ≡ r−2[(r�m� + r�m�)(r · p)− (r�p� + r�p�)(r ·m)] ,

B
��
1,1,1(r̂)= r−1���(r · p) ,

B
��
7,1,1(r̂)= r−1[r�p� + r�p�] ,

B
��
9,1,1(r̂)= r−3r�r�(r · p) ,

B
��
8,1,1(r̂) ≡ r−2[(r�m� + r�m�)(r · n)− (r�n� + r�n�)(r ·m)] ,

B
��
1,1,−1(r̂)= r−1���(r ·m) ,

B
��
7,1,−1(r̂)= r−1[r�m� + r�m�] ,

B
��
9,1,−1(r̂)= r−3r�r�(r ·m) ,

B
��
8,1,−1(r̂) ≡ r−2[(r�p� + r�p�)(r · n)− (r�n� + r�n�)(r · p)] . (D.7)

These are all the possiblej = 1 contributions to the symmetric, mixed parity (inhomogeneous) structure
function.
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Table D.1
The number of free coefficients in the symmetricj = 1 sector for inhomogeneous turbulence and for different geometries

k �= 0, �= �= 3 �= 0, �= �= 1 �= 0, �= 3, �= 1

� �= 0 �= 0 � �= 0 �= 0 � �= 0 �= 0

0 3 3 2 1 2 0
1 1 0 1 0 0 0

−1 2 0 3 0 2 1
Total 6 3 6 1 4 1

For the experimental setup II, we want to analyze the inhomogeneous structure function in the case
�= �= 3, and azimuthal angle�= 0 (which corresponds to vertical separation) and we obtain the basis
tensors:

B33
1,1,0(�)= cos� ,

B33
7,1,0(�)= 2 cos� ,

B33
9,1,0(�)= cos3 � ,

B33
8,1,1(�)=−2 cos� sin� ,

B33
1,1,−1(�)= sin� ,

B33
9,1,−1(�)= cos2� sin� . (D.8)

Table D.1gives the number of free coefficients in the symmetricj=1 sector in the fit to the inhomogeneous
structure function for various geometric configurations.

Appendix E. The matrix form of the operator of the linear pressure model

Using the basic identities of the�jm(r) functions (see[27]),

�2�jm(r)= 0 ,

r����jm(r)= j�jm(r) ,

a short calculation yields:

K̂C�(r) ≡ K��(r)����C
�(r)

=Dxε

[
2c′′1 + 2(2+ ε)

c′1
r
− (2+ ε)(j + 1)(j + 2)

c1

r2

]
B�

1jm(r̂)

+Dxε

[
2c′′2 + 2(2+ ε)

c′2
r
+ 2(2+ ε)

c1

r2
− 2(2+ ε)j (j − 1)

c2

r2

]
B�

2jm(r̂) .
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Therefore, in matrix notation, the Kraichnan operator can be written as

K̂

(
c1
c2

)
= 2Drε

(
1 0
0 1

)(
c′′1
c′′2

)
+ 2D(2+ ε)rε−1

(
1 0
0 1

)(
c′1
c′2

)
−D(2+ ε)rε−2

(
(j + 1)(j + 2) 0

−2 j (j − 1)

)(
c1
c2

)
≡ rεK2

(
c′′1
c′′2

)
+ rε−1K1

(
c′1
c′2

)
+ rε−2K0

(
c1
c2

)
. (E.1)

Letting

T �(r)= t1(r)B
�
1jm(r̂)+ t2(r)B

�
2jm(r̂) , (E.2)

and applying a Laplacian tôPT �, we get

�2P̂T � =
[
−j t ′′2 + j

t ′1
r
+ j (2j − 1)

t ′2
r
− j (j + 1)

t1

r2
− j (j − 1)(j + 1)

t2

r2

]
B�

1jm

+
[
t ′′2 −

t ′1
r
+ (2− j)

t ′2
r

]
B�

2jm .

Hence in matrix notation,

�2P̂

(
t1
t2

)
=
(

0 −j
0 1

)(
t ′′1
t ′′2

)
+ 1

r

(
j j (2j − 1)
−1 2− j

)(
t ′1
t ′2

)
− 1

r2

(
j (j + 1) j (j − 1)(j + 1)

0 0

)(
t1
t2

)
≡ P2

(
t ′′1
t ′′2

)
+ 1

r
P1

(
t ′1
t ′2

)
+ 1

r2
P0

(
t1
t2

)
. (E.3)

Now that the matrix forms of the Kraichnan operator and of the Laplacian of the projection operator have
been found, we can combine these two results to find the matrix form of the LHS of Eq. (100). To this
aim let us define(

t1
t2

)
= K̂

(
c1
c2

)
,

and from Eqs. (E.1, E.3) we get

�2P̂K̂

(
c1
c2

)
= rεM4

(
c
(4)
1

c
(4)
2

)
+ rε−1M3

(
c
(3)
1

c
(3)
2

)
+ rε−2M2

(
c
(2)
1

c
(2)
2

)
+ rε−3M1

(
c
(1)
1

c
(1)
2

)
+ rε−4M0

(
c1
c2

)
,

where the number in parenthesis denotes the order of the derivative. The matricesMi are given by

M4 ≡ P2K2 ,

M3 ≡ 2εP2K2+ P2K1+ P1K2 ,
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M2 ≡ ε(ε− 1)P2K2+ 2(ε− 1)P2K1+ P2K0+ εP1K2+ P1K1+ P0K2 ,

M1 ≡ (ε− 1)(ε− 2)P2K1+ 2(ε− 2)P2K0+ (ε− 1)P1K1+ P1K0+ P0K1 ,

M0 ≡ (ε− 2)(ε− 3)P2K0+ (ε− 2)P1K0+ P0K0 . (E.4)

To find the RHS of Eq. (100) we expand the “forcing”A�(r) in terms of the spherical vectorsB1jm,B2jm,

A�(r)= f1(r)B
�
1jm(r̂)+ f2(r)B

�
2jm(r̂) , (E.5)

and applying a Laplacian we find the matrix form of�2A�(r):

�2
(
f1
f2

)
=
 f ′′1 +

2

r
f ′1− (j + 1)(j + 2)

1

r2
f1

f ′′2 +
2

r
f ′2+

2

r2
f1− j (j − 1)

1

r2
f2

 ≡ (�1
�2

)
. (E.6)

At this point it is worthwhile to remember that the forcing termA�(r/L) is assumed to be analytic. As
a result forr/L>1 its leading contribution in the(j,m) sector is proportional to��rjYjm(r̂) ∼ rj−1.
However�2A�(r/L) is also analytic, and must therefore also scale likerj−1 for small r, instead of like
rj−3 which could be the naive dimensional guess.

To proceed we restrict ourselves to finding the solution in the inertial range and beyond. In these
ranges the dissipative term��2�2C�(r) is negligible and can be omitted, thus reaching Eq. (101) forc1(r)

andc2(r).
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