Available online at www.sciencedirect.com

SC|ENCE@D|RECT®
PHYSICS REPORTS

W

=ty

LSEVIER Physics Reportgt14 (2005) 43—164

www.elsevier.com/locate/physrep

Anisotropy in turbulent flows and in turbulent transport

Luca Biferalé*, ltamar Procaccha

aDepartment of Physics and INFN, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
bDepartment of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

Accepted 1 April 2005
Available online 23 May 2005
editor: D.K. Campbell

Abstract

The problem of anisotropy and its effects on the statistical theory of high Reynolds nuRe&urbulence (and
turbulent transport) is intimately related and intermingled with the problem of the universality of the (anomalous)
scaling exponents of structure functions. Both problems had seen tremendous progress in the last 5 years. In this
review we present a detailed description of the new tools that allow effective data analysis and systematic theoretical
studies such as to separate isotropic from anisotropic aspects of turbulent statistical fluctuations. Employing the
invariance of the equations of fluid mechanics to all rotations, we show how to decompose the (tensorial) statistical
objects in terms of the irreducible representation of3&/) symmetry group (with/ being the dimension] = 2
or 3). This device allows a discussion of the scaling properties of the statistical objects in well-defined sectors of
the symmetry group, each of which is determined by the “angular momenta” sector numbeysFor the case
of turbulent advection of passive scalar or vector fields, this decomposition allows rigorous statements to be made:
(i) the scaling exponents are universal, (ii) the isotropic scaling exponents are always leading, (iii) the anisotropic
scaling exponents form a discrete spectrum which is strictly increasing as a functioifluis emerging picture
offers a complete understanding of the decay of anisotropy upon going to smaller and smaller scales. Next, we
explain how to apply th&Q(3) decomposition to the statistical Navier—Stokes theory. We show how to extract
information about the scaling behavior in the isotropic sector. Doing so furnishes a systematic way to assess the
universality of the scaling exponents in this sector, clarifying the anisotropic origin of the many measurements that
claimed the opposite. A systematic analysis of direct numerical simulations (DNS) of the Navier—Stokes equations
and of experiments provides a strong support to the proposition that also for the non-linear problem there exists
foliation of the statistical theory into sectors of the symmetry group. The exponents appear universal in each sector,
and again strictly increasing as a functionjofAn approximate calculation of the anisotropic exponents based on
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a closure theory is reviewed. The conflicting experimental measurements on the rate of decay of anisotropy upon
reducing the scales are explained and systematized, showing that isotropy is eventually recovered at small scales.
© 2005 Published by Elsevier B.V.
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1. Introduction

The statistical theory of fluid turbulence is concerned with correlation functions of the turbulent velocity
vector fieldu(x, t) wherex is the spatial position andthe time[1]. Since the velocity field is a vector,
multi-point and multi-time correlation functions are in general tensor functions of the vector positions
and the times. Naturally, such functions have rather complicated forms which are difficult to measure
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and to compute. Consequently, almost from its very beginning, the statistical theory of turbulence was
discussed in the context of an isotropic and homogeneous model. The notion of isotropic turbulence was
firstintroduced by Taylor in 193f2]. It refers to a turbulent flow, in which the statistical averages of every
function of the velocity field and its derivatives with respect to a particular frame of axes are invariant to
any rotation in the axes. This is a very effective mathematical simplification which, if properly used, can
drastically reduce the complexity of the theory. For this reason, it was very soon adopted by others, such
as Karman and Howartl3] who derived the Karman—Howarth equation (see below), and Kolmogorov
[4,5] who derived thé law (re-derived below). In fact, most of the theoretical work in turbulence in the
past 60 years was limited to the isotropic model.

Experimentally, however, we know that isotropy holds only as an approximation with a varying degree
of justification. In all realistic flows, there always exists some anisotropy at all scales; the statistical
properties of the velocity field are effected by the geometry of the boundaries or the driving mechanism,
which are never rotationally invariaf@—14]. For example, all geophysical flows are subject to the rotation
ofthe globe, which introduces anisotropy via the Coriolis foft&s-17] Therefore, a realistic description
of turbulence cannot be purely isotropic and must contain some anisotropic elements. Yet the problem
is that once we take anisotropy into account, we face a drastic increase in the complexity of the theory.
The number of variables that is needed to describe the common statistical quantities, such as correlation
functions and structure functions of the velocity field, increases a lot. For example, under shear there is
a characteristic length scale, which can be constructed from the typical velocity and the typical shear
[8,18]. This length has to be considered in order to distinguish those scales where the turbulent evolution
is mainly dominated by the inertial effects of fluid mechanics or by the direct input of energy due to the
anisotropic shedl9-22] Similarly, all dimensional estimates acquire a significant degree of ambiguity
because of the proliferation of different dimensional quantities related to the parameters of anisotropy.
As a consequence of these inherent difficulties the existing anisotropic effects were simply ignored in
many of the experimental and simulational studies of statistical turbulence. This attitude gave rise to
ambiguous assessments of important fundamental issues like the universality of the scaling exponents in
turbulence.

The standard justification for ignoring anisotropic effects is that the basic phenomenology, since the
pioneering works of Kolmogorof4,5], predicts aecovery of isotropyat sufficiently small scales of the
turbulent flows. Nevertheless, both recent experimental works and theoretical analysis suggested that the
actual rate of recovery is much slower than predicted by simple dimensional analysis, pointing out even the
possibility that some anisotropic correlation function, based on velocity gradients(stayfor anyRe
[7,23—-26] In order to settle these kind of problems, theoretically or experimentally, it is crucial to possess
systematic tools to disentangle isotropic from anisotropic fluctuations and to distinguish among different
kinds of anisotropic fluctuations. Thus a central challenge in the theory of anisotropy in turbulence is
the construction of an efficient mathematical language to describe it. Without a proper description, the
complexities of the formalism can soon obscure the physical content of the processes that we wish
to study.

The problem of anisotropy is not disconnected from the other fundamental problem which has to do
with the nature of universality in turbulence. By universality, we mean the tendency of different turbulent
systems to show the same small-scales statistical behavior when the measurements are done far awa
from the boundaries. Consider, for example, the longitudinal two-point structure function

SOy = (Gudx,r, 1), Sug(x,r, 1) =F-[UX+r,1)—uxnl, 1)
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with f being the unit vector in the direction gfand(-) stands for an appropriate ensemble average. This
function shows essentially the same dependence on the separatiorn yettether it is measured in the
atmospheric boundary layer, in a wind tunnel or in a DNS, provided it is measured for sufficiently small
separations and far from the boundaries. This high degree of universality cannot be expected if anisotropic
fluctuations were the dominant contributions to the two-point structure functions. Different boundary
conditions and different forcing mechanism necessarily introduce different large-scale anisotropies in
the flow, which would translate to different small-scale anisotropic fluctuations. Small-scale universality
can be achieved only if anisotropic fluctuations are sub-leading with respect to the isotropic fluctuations.
In the following, we also discuss which aspects of the anisotropic fluctuationmarersaland which

are not. We will see that some aspects of the anisotropic fluctuations depend on the boundary conditions
while other aspects do not. In fact, we will show that scaling exponents are universal whereas amplitudes
depend on the boundary conditions.

In the last 5 years, tremendous progress in the understanding of the two aforementioned problems,
i.e., finding a mathematical language that properly describes anisotropic turbulence and its universal
properties has been achieved. Not surprisingly, the two problems are closely related, as it often happens
in physics—a problem becomes considerably simpler if described in the proper mathematical language.
The technical core of these recent achievements iS®@8) decompositiorf27]. This tool enjoys the
advantages of being mathematically simple, yet very powerful and systematic. By using it, many of the
mathematical complexities of dealing with anisotropy in turbulence and in other hydrodynamic problems
are greatly simplified. The principal idea is to represent the main statistical observables, such as structure
functions and correlation functions, in terms of their projections on the différemnt) sectors of the
group of rotations. It can be applied to all the statistical quantities in turbulence, creating a detailed profile
of the effects of anisotropy. Additionally, and perhaps more importanths@{8) decomposition reveals
some new universal properties of fully developed turbulence. It is expected that each sect@@B)he
group has its own universal exponents. In particular, it is shown that the exponents associated with the
anisotropic sectors are larger than the isotropic exponents, in accordance with the isotropization of the
statistics as smaller and smaller scales are observed.

As already mentioned, tHeQ(3) decomposition is useful also to investigate isotropic and anisotropic
fluctuations in other hydrodynamic problems. In particular, we will focus on the case of scalar and
vector quantities passively advected by a turbulent velocity field. In these cases, one may often elevate
the phenomenological assumptions made for turbulent anisotropic fluctuations to the status of rigorous
statement$28]. By using a systematic decomposition in different sectors oSi&) group one may
show that passive scalars, advected by stochastic self-similar Gaussian velocity fields, always possess
isotropicleadingsmall-scale fluctuations. Moreover, one may quantitatively distinguish among different
kinds of anisotropies, assessing their rate of decay by going to smaller and smaller scales. It turns out
that the rate ofecovery of isotropys typically much slower than expected on the basis of dimensional
analysis. Moreover, all different anisotropic fluctuations decay in a self-similar way but with different
rates; the scaling exponents being universal, while prefactors are non-unj28ijsdlhe very same can
be rigorously proved for the passive advection of vector-like quantities, as for the case of magnetic fields
when the feedback on the velocity evolution due to the Lorentz force is neglected. There, the vector
nature of the transported quantity leads to an even richer, and more complex, list of possible anisotropic
fluctuations[30,31] Another important problem which we address in detail is the case of the passive
advection of a vector-like incompressible quantity, i.gassive vector with pressufd2]. Although
without any counterpart in nature, such a system is particularly interesting because it can be seen, for
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some aspects, as the clodastar approximation to the non-linear Navier—Stokes evolution. For example,

it allows to study in a systematic way some problems connected to the convergence of integrals involving
the pressure term. Similar technical problems arise also in the analysis of both isotropic and anisotropic
multi-point velocity correlations in Navier—Stokes equations.

Of course, a significant part of this review will be devoted to applications of the theoretical and technical
tools to physical experimental dqte0,13,33—-37hnd numerical data sdtk8,38—42] In order to exploit
the entire potentiality of thB(Q(3) decomposition one needs to measure the whole velocity tiedgl,in a
three-dimensional volume. This is because in order to disentangle different projections on different sectors
one needs to integrate the given correlation function against the proper eigenfunction of the rotation group
on the 3l sphere of radius. By doing that, the exact projection on each different sector oS08)
decomposition is under control, with the only practical limitations for reaching highly anisotropic sectors
being the lack of resolution of highly fluctuating angular properties. At the present stage of experimental
capabilities the exact decomposition can be carried out explicitly only in data sets coming from DNS. Here
the velocity field in the whole testing volume is available. For experimental data, the best way to exploit
the SQ(3) decomposition is to either select observables with vanishing isotropic components, in order to
focus directly on anisotropic sectors, or to perform a multi-sector analysis, i.e. to fit simultaneously the
isotropic and anisotropic components.

The review is organized as follows. Section 2 offers a historical review of isotropic turbulence. We
present a modern derivation of the exact results pertaining to the third-order structure function and the
celebratetg law. We review the standard theory for all correlation functions, and discuss the experimental
difficulties with the isotropic theory. These difficulties included apparent persistence of anisotropies into
the small scales for higRe apparent location dependent scaling exponents, etc. In Section 3 we review
the history of attempts to deal with anisotropy. In Section 4, the technical basisIf{Bedecomposition
is introduced focusing on the particular statistical problems of anisotropic fluctuations discussed in the
previous section. Then, in Section 5 we switch to staggctly solvablénydrodynamic problems with
emphasis on either those aspects peculiar to each different model and to those features in common with the
non-linear Navier—Stokes case. Among the common aspects we cite the possibility to study in these models
in full detail thefoliation of the equations of correlation functions in different anisotropic sectors; the
universality of isotropic and anisotropic exponents; the hierarchical organization of exponents—leading
to recovery of small-scales isotropit the end of this section, we present closure results for two-point
turbulent structure function in the anisotropic sectp£s2, 4, 6. In Section 6, the utility of this language
is demonstrated by discussing experimental data in atmospheric boundary layer and on homogeneous:-
shear flows. In Section 7, we present the analysis of anisotropy in DNS of typical strongly anisotropic
flows. Two cases are discussed in depth: channel flows and random Kolmogorov flows, the latter being
homogeneous flows stirred at the large scales. Section 8 presents a summary and conclusions. Technice
details are collected in the appendices.

2. Historical review: isotropic turbulence

In the first two sections we present a historical review. We start with the model of homo-
geneous isotropic turbulence, and then turn to previous attempts to treat theoretically anisotropy in
turbulence.
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2.1. Homogeneous and isotropic turbulence

The Navier—Stokes equations for the velocity field are invariant to all rotations:

ou(x, t) 2
o 4+ [ux,t) - VIu(x,t) = =V p(X, t) + vA“u(x, 1) ,
V-ux,t)=0 2)

with p(x, t) andv being the pressure and kinematic viscosity, respectively. Since the gradientand Laplacian
operators are both rotationally invariant, the rotation symmetry of the equation can be broken only by
anisotropic forcing terms or anisotropic boundary conditions. Rather naturally then the statistical theory
of turbulence was mostly developed in the frameworlsofropic turbulencg2]. The central idea of this
approximation is that the statistical average of any function of the velocity components in any coordinate
system is unaltered if this coordinate system is rotated or reflected in any manner. The assumption of
isotropy was widely adopted. In 1938, Karman and HowfBttused it to explore the second- and third-
order correlation functions of the velocity field. Their use of tensor notation was more elegant and compact
than that used by Taylor. It enabled them to derive some constraints on these correlation functions and
express them in terms of a few scalar functions. For example, for the second-order correlation function
in homogeneous turbulence

C*Pr, 0y = wx+r, Hul(x, 1)), ()
they used the representation
CPar, 0y =1f(r, 1) — gr, OIF**F + g(r, 00" @)

and then derived a linear differential relation betwe@n, 1) andg(r, t) using the solenoidal condition
of 3,C*(r,1) =0,
of(r,1)

2f(r,t) —2g(r,t) = —r )
or

This means that under the assumption of isotropy, and using the solenoidal condition, the second-order
correlation function can be written in terms of one scalar function instead of nine. Similarly, Karman and
Howarth analyzed the third-order correlation function by representing it as an isotropic tensor and then
reducing the number of scalar functions using the solenoidal condition. They were also able to connect
it to the second-order correlation function in decaying turbulence using the Navier—Stokes equations.
These computations have since found their way into every standard text-book on the statistical theory of
turbulence.

The mathematical representation of isotropic turbulence has reached its most elegant and powerful
form in a paper by Robertson from 19B]. Robertson provided a systematic way to represent isotropic
tensors using the theory of invariants. For example, to derive the general representation (4) in the stationary
case using Robertson’s method, we considestiadarfunction

C(a b,r) = C*(r)abg

with a andb being two arbitrary vectors. I€*#(r) were an isotropic tenso€ (a, b, r) would preserve
its functional form upon an arbitrary (simultaneous) rotation of the three vectarb. Using invariant
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theory, Robertson deduced th@ta, b, r) must be a function of the six possible scalar products),
(r-a),...and of the determinartab] = e,,sr*a*b”. Additionally, by definition, it must be a bilinear
function ofa andb and therefore must have the following form:

Ca,b,r)=A@)(r-a)(r-b)+ B(r)(a-b)+ C(r)[rab] ,

whereA(r), B(r) andC (r) are arbitrary functions. Finally, recalling th@ia, b, r) is the contraction of
C*#(r) with a andb, we find that

Caﬂ(l’) = A(r)r“rﬂ + B(r)éaﬁ + C(’,)Euaﬂru )

If we further demand **(r) to be invariant to improper rotations as well (i.e., rotations plus reflections),
we can drop the skew-symmetric paft®, thus retaining a representation which is equivalent to Eq. (4).

2.2. The‘g1 law in isotropic turbulence and its generalization

By using the isotropic representation of the third-order correlation function, in 1941 Kolmogorov proved
the “four-fifth law” well inside the inertial range of a fully developed turbulence. This law pertains to
the third-order moment of longitudinal velocity differences, stating that in homogeneous, isotropic and
stationary turbulence, in the limit of vanishing kinematic viscosity 0

([uex, 1.0 =—2er

wheree is the mean energy flux per unit time and masss v(|V1u/;|2). The fundamental assumption
needed to derive this law is the so-called “dissipation anomaly” which means that the dissipation is finite
inthe limity — 0. As noted if5], “this is one of the most important results in fully developed turbulence
because it is both exact and non-trivial. It thus constitutes a kind of ‘boundary condition’ on theories of
turbulence: such theories, to be acceptable, must either satisfy the four-fifth law, or explicitly violate the
assumptions made in deriving it".

To demonstrate how isotropy helps in deriving this result, we present a re-derivation in which we will
obtain an additional exact relation that appears to have the same status as the four-fifth law, pertaining
to homogeneous, stationary and isotropic turbulence with he[##y45] Defining the velocity(x, t)
asv(x, ) = u(x,t) — (u) we consider the simultaneous third-order tensor correlation function which
depends on two space points:

Iy = x+ 1, P (x, )7 (x, 1)) . ©)

We show thatin the limit — 0, under the same assumption leading to the fourth-fifth law, this correlation
function read$45]

. € (., 2 h ., .
I = =15 (”%ﬁ o — 3 ’“%) — gglesor” + eworhr? (6)

whered, is the Kronecker delta andy, is the fully antisymmetric tensor. The quantityis the mean
dissipation of helicity per unit mass and time,

h = v(VuP) VIV x ulf))

where repeated indices are summed upon. In the derivation below it assuméd¢nadins constant
whenv — 0 in the same spirit of the dissipation anomp$—48] The first term in Eq. (6) is just the
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4/5 law. The new part of result (6) can be also displayed in a form that deperidzsione by introducing
the longitudinal and transverse partsiothe longitudinal part isi; = r(u - r)/r2 and the transverse part
isu;t = u — ug. In terms of these quantities we can present a “two-fifteenth law”

([dup(x, 1, O] - [ug(r +x, 1) x up(x, 1) = 5 hr? . ©)

We note that this result holds also when we replabg v everywhere.

To derive result (6) we start from the correlation functith’’ (r) which is symmetric with respect to
exchange of the indicgsandy as is clear from the definition. In an isotropic homogeneous medium with
helicity (no inversion symmetry), the most general form of this objept5$

TPy = a1 (r)[0upr? + Suyr? + 311 + a1(r) [Supr” + S0r? — 255,11
+ bo(r)[eupsr” + eoﬁ,(srﬁ]r‘S + az(r)[dupr’ + (nyrﬁ + opr” — 5r°‘rﬁr"/r2] .

This general representation is invariant to the choice of orientation of the coordinates. Not all the co-
efficients are independent for incompressible flows. Requitifig’ (r) /or* = 0 leads to two relations
among the coefficients:

<dE + §) az(r) = gi[611(7) +ai(r)], (i + §) [Sa1(r) —4ai(r)]=0.
roor 3dr dar r
As we have two conditions relating the three coefficientsi; andag only one of them is independent.
Kolmaogorov's derivation related the rate of energy dissipation to the value of the remaining unknown.
Here the coefficienk, remains undetermined by the incompressibility constraint; it will be determined
by the rate of helicity dissipation.

Kolmogorov’s derivation can be paraphrased in a simple manner. Begin with the second-order structure
functionS@ (r) = (Ju(x+r) —u(x)|?). Computing the rate of change of this (time-independent) function
from the Navier—Stokes equations (2) we find

25®@ .
0= 2—at(r) =-99(r) = 2+ wW259(r), (8)

whereZ@ (r) stems from the non-linear tern - V)u and as a result it consists of a correlation function
including a velocity derivative. The conservation of energy allows the derivative to be taken outside the
correlation function:

7@ (r) = a%w“(x, Du(x + 1, D[P x, 1) —uP(x +r1,0)1) . 9)
In terms of the function of Eqg. (5) we can write

7@ (r) = %[J“’ﬁ“(r, 1) — J=P(—r, )] . (10)
Note that Eq. (5) is written in terms ofrather tharu, but using the incompressibility constraint we can
easily prove that Eq. (9) can also be identically written in terms i@ther tharu. We proceed using

Eq. (8) in Eq. (10), and find

79 (r) =2 a% rP[Bay(r) + 2a1(1)] . (11)
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Forr in the inertial interval, and for — 0, we can read from Eq. (8)? (r) = —2¢ and therefore have
the third relation that is needed to solve all the three unknown coefficients. A calculation leads to

ar(r)=—2¢/45, a1=-¢/18 a3=0.

The choice of the structure functiaf(r) leaves the coefficierttz(r) undetermined, and another cor-
relation function is needed in order to remedy the situation. Since the helicity[E€ x u], we seek a
correlation function which is related to the helicity of eddys of scale of

TO@) = ([ur+x,1) —u, 0)]- [V X uX+r,1) — V x ux, n]) .
Using the Navier—Stokes equations to compute the rate of change of this quantity we find

oT®@
= —26t(r) =—GD(r) =20 —W2T () | (12)

which is the analog of (8), and where

GP@r)={ux, 1) - [V, X [UX—+r,1) X [V, x u(X+r, )]}
+ {termr — —r} . (13)

The conservation of helicity allows the extraction of two derivatives outside the correlation functions.
The result can be expressed in terms of definition (5):

G : :
Gy = o n earuupreny [J7F1(0) + TP (=) |

Substituting Eq. (8) we find
2

e b Ol = 0?1

GPr)=2

which is the analog of Eq. (11). Using Eg. (12) in the inertial interval in the limit O we find the
differential equation

2
2 d<by(r) 4o dbo(r)

h
15 =——.
dr? dr + 2(r) 2

The general solution of this equationZs(r) = —h/30 + a1r > + aor—3. Requiring finite solutions

in the limit » — 0 means that; = a» = 0. Accordingly we end up with Eg. (6). The moral of this
example is thakven in isotropic and homogeneous systems there exist sub-leadingvibichscan
become dominant for specially selected objects like (7). Recently, a direct numerical simulation aimed
at measuring the “two-fifteenth law” was presented4ifl] with a good agreement with the theoretical
prediction. Once anisotropy exists, there are many more (in fact, infinitely many) sub-leading contributions
that need to be assessed carefully. Similar results for slightly different correlation functions have also been
found in[50,51]
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2.3. Kolmogorov’s theory for second, fourth, and higher-order structure functions

Unfortunately, the exact result pertaining to the third-order structure function is rather unique. The
moment we consider second, fourth or higher-order correlation functions there is no exact result for the
scaling exponents. Kolmogorov’'s 1941 theory states thatRmlarge enough, small-scales turbulent
fluctuations should recover isotropy and homogeneity (if measured far enough from boundaries) and
should possess universal scaling properties depending only on the mean eneig¥fluRpmogeneous
and isotropic ensembles one defines

Sy = (oul(x, 1, 1)) = (er)"3 ™ (L, ﬁ) : (14)
Lo r

where Lo andy are the integral length scale and the viscous scale, respectively. The furi¢tiois

supposed to be well behaved in the limit of infinite Reynolds numbers for fixed separaliion, . o f

(x, y) = const. In this limit, the celebrated K41 scaling prediction for structure functions in the inertial

range <r < Lo, follows:

SOy ~ ™ @)t with (™ = % . (15)
In (15) the constant€ ™ depend only on the large scale properties. Because of stationarity, the mean
energy flux in Eq. (15) can be equally taken to be the mean energy input or the mean energy dissipation.
Kolmogorov's theory goes beyond the scaling prediction (15). For example, any non-varnshing
order structure functions, including purely transversal and mixed longitudinal-transversal velocity incre-
ments, must possess the same scaling exponents:

ST (1) = (uf(Noug' (r)) ~ €M @r)rtm/i3 (16)

wherep =n + m, éut(r) = ou(r) — due(r)f, andou(r) is one of the components of the two-dimensional
transverse velocity difference. Note that due to the assumption of isotropy, only even combinations of
transversal increment in (16) have a non-vanishing average. It is also not difficult to extend the K41
reasonings to describe also correlation functions at the viscous scales, i.e. observables based on gradien
statisticgd52,53]

2.4. Experimental difficulties with the isotropic theory

On the whole, experimental tests of Kolmogorov’'s theory ran into increasing difficulties when the
data were analyzed with greater detail. The first systematic attempt to check the isotropic scaling (15)
for high Renumber turbulence wd84]. These authors performed a high statistical test of K41 theory
by going beyond the usual two-point correlations. They measured structure functions of higher order,
reaching good evidence that there eaisbmalougleviations from the scaling exponents (15). Their data
substantiate a power-law behavior with) = n/3. Atthat time, and for many year later, the situation was
very controversial both theoretically and experimentally. There appeared many claims that the observed
deviations were due to sub-leading finite-Reynolds effects. One should not underestimate the difficulties
of getting reliable estimates of the scaling exponents. First, one must expect finite Reynolds numbers
corrections which magtronglyreduce the inertial range where scaling laws are expected or introduce
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anisotropic corrections to the isotropic K41 predictions. Both effects are usually presentin all experiments
and numerical simulations. Nowadays, state-of-the-art experiments of turbulence in controlled geometries
reach a maximunRe numbers measured on the gradient scale$,= (|Vu|)/(|u]), of R; ~ 5000
where R, = AU /v and U is the typical large-scale velocity. In atmospheric floRiscan be as high

asR; ~ 20,000 but at the expense of high anisotropy. More complex is the situation of DNS where
the best resolution ever reached up to now is 4(86], corresponding to &; ~ 1100. DNS allow

a minimization of the anisotropic corrections, by implementing periodic boundary conditions and fully
isotropic forcing, something which is not experimentally feasible. However, also in DNS the discrete
symmetries induced by the finite lattice spacing do not allow for perfect isotropic statistics. We thus
either have high-Reynolds-numbers experiments which are strongly perturbed by anisotropiceffects, or
DNS isotropic flow at moderate Reynolds numbers. Therefore, one has to face the problem of how to
disentangle isotropic from anisotropic fluctuations and how to extract information on the asymptotic
scaling with a finite—often short—inertial-range extension. Only recently, after many experimental and
numerical confirmations of the results [&4], the situation became clear&6]. We may affirm now

with some degrees of certitude that the isotropic scaling exponentmarealousthe K41 prediction

{(n) = n/3 is wrong, except for = 3 which is fixed to be&(3) = 1 by the exact 45 law. Moreover,

the possibility of showing analytically the existence of anomalous scaling in turbulent advig8jon
definitely eliminated those arguments supportingitiqgossibilityof having aReindependent anomalous
scaling in any hydrodynamic system. From a phenomenological point of view, it is easy to extend the
K41 theory to include anomalous scaling. Already Kolmogorov noticed, after Landau’s criticism in 1962,
that it is unrealistic to expect the isotropic inertial range fluctuations to depend only oredo@nergy
dissipationg. Kolmogorov proposed in 19657] employing the coarse-grained energy dissipation over

a box of sizer,

1
yl<r

to match the correct dimensions of structure functions in (14), the so-called refined Kolmogorov
hypothesis:

S™ )y = D@33 (18)

This hypothesis connects the deviation from the K41 prediction,— n/3 = t(n/3), to the anomalous

scaling of the coarse-grained energy dissipat'(éi‘{:?’(r)) ~ r*®/3  Anomalous scaling of isotropic
structure functions is therefore connected to the multifractal properties of the three-dimensional energy
dissipation field5]. It should be noted however that the refined Kolmogorov hypothesis related inertial
range scaling to scaling of dissipative quantities, and delicate issues connected to small distance expan-
sions and fusion rules are being disregarded [E8&9] At any rate, the relation presented by Eq. (18)

did not advance the calculation of the scaling exponents beyond crude phenomenology.

2.5. Persistence of anisotropies

A central issue of K41 phenomenology is the assumptigrtoin-to-isotropyfor smaller and smaller
scales. Recently, this assumption had been put to test in experiments and sim{l&jaas39,60] A
useful experimental set-up to test the return to isotropyhisraogeneoushear flow[6] where the large-
scale mean velocity has a linear profie= (Voy, 0, 0). The shear is given by’;; =0, V; = 6;,0x Vo.
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We thus have a homogeneous but anisotropic flow, close to the ideal case for studying the influence of
large-scale anisotropies on the small-scale statistics. “Small scales” are defined here in comparison to
the characteristic shear lengihy = ¢%/3/.7; for r < L - we may expect that anisotropic fluctuations are
sub-leading with respect to the isotropic ones. The easE « is of interest in situations where the shear

is very intense, as very close to the walls in bounded flows. In such cases we expect a dramatic change
from the K41 phenomenologyl9,21,22] Fortunately, it is not that difficult to design experiments or
DNS possessing an almost perfect linear profile with homogeneous[gtiEa24,60] A popular way to
measure small-scales anisotropies is to focus oR#uependence of isotropic and anisotropic statistical
observables built in terms of velocity gradients. For example, due to the symmetries of the mean flow,
gradients of the stream-wise component in the shear direétjop, may have a skewed distribution due

only to the anisotropic fluctuations; they have a symmetric PDF in a perfectly isotropic flow. A natural
measure of the residual anisotropy at small scales as a functReisthe mixed generalized skewness
based on gradients:

((@yux)? )
((avux)2> (2n+1)/2 :

M@ (R ) 19)

These objects vanish in isotropic ensembles. Of course, at finite Reynolds numbers one expects that the
large-scale anisotropy introduced by the shear still remains, even on the gradient scale. Therefore, the rate
of decay of (19) as a function &eis a quantitative indication of the rate of decay of anisotropy at small
scales. In the next section, we review Lumley’s dimensional arguf@grior anisotropic fluctuations

which predicts

M@ (R;) ~ R Y2,

Vn . (20)

In fact, both numerical23,24] (at low Reynolds numbers) and experimental tests (uf;to~ 1000)

showed a clear disagreement with the dimensional prediction (20). For examifjl¢ia authors quote a

decay in agreement with the prediction #at® (R;), an almost constant behavior as a functioRefor

the fifth order,M®(R;) ~ O(1) and arincreasingbehavior for the seventh ordaf " (R;) ~ R %831

These results have cast a severe doubt on the fundamental assumption of the K41 theory. Similar results.
with even more striking contradictions with the hypothesis of the return-to-isotropy, have been measured
in the problem of passive scalar fluctuatiofiss T — (T'), advected by an isotropic velocity field in

the presence of a mean homogeneous scalar gra¥iéht,= (g, 0, 0). The equation of motions for the
passive advected field in this case are

0,0 +U-V0=gu, + 1% .

Both experimental and numerical data show a strong disagreement with the prediction that general-
ized skewness of temperature gradients becomes smaller upon increasing Reynolds and Peclet number
[61-66]

We will show below how the analysis based®@Q(3) decomposition and its theoretical consequences
settles this puzzle of strongersistence of anisotropig¢89]. In fact, contrary to what appears, the K41
phenomenology with its assumption refturn-to-isotropyand the above experimental results are not at
all in contradiction (see Section 6.2.1).
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2.6. Longitudinal and transversal isotropic structure functions

Another debated issue concerning the K41 phenomenology and its multifractal generalization (18) has
to do with the observed discrepancies between the scaling properties of longitudinal, transversal, and
mixed longitudinal-transversal structure functions in (supposedly) isotropic fully developed turbulence
[34,67—70] As previously stated, K41 theory, for isotropic flows, predicts the same scaling behavior, in
the limit of highRe independent of the Cartesian components of the velocity increments in the structure
functions. For a given order with p = m + n, only the prefactors in (16) may depend on the particular
choice ofn andm. Let us denote witt§>-™ the scaling exponent of the mixed structure function (16)
made ofn longitudinal increments and @f transversal increments in a isotropic ensemble:

S(n’m)(r) ™ C(n’m)ré'(mm) .

For p <4 the issue does not exist; due to the incompressibility constraint all second- and third-order
longitudinal or transversal structure functions have the same scaling in a isotropic ensemble. &or
many experiments and numerical simulations found ¢at) < (™" if n < n’ andm > m’ whenn +
m=n'+m’. Itappears that with increasingthe scaling exponents reduce (the signal is more intermittent).
The largest difference for a structure function of ordés therefore achieved when we compare the purely
longitudinal scalind(p, 0) with the purely transversal scaliigo, p). Other experimental data suggest

the possibility of aslowtendency of the longitudinal and transversal scaling exponents to coalesce for
increasingRe[71-73]

We will argue below that the experimental measurements of different exponents stems from anisotropic
corrections that affect differently the longitudinal and transverse components. In other words, by not
removing the anisotropic contributions, one cannot expect pure power-law behavior. The situation is
more complex for the analysis of data from DNS. There, one may implement highly isotropic forcing
and boundary conditions, such that in most cases any residual anisotropic effects may safely be neglectec
even at moderatBenumbers. On the other hand, state-of-the-art numerical simulations are still strongly
limited in the maximumRe achievable. Only very recently reliable data with high statistics became
available at resolution 102469], while most of the previous DNS where limited to lower resolutions.

At resolution of 1024 one reaches a moderake ~ 400, far below many experiments. Because of the
consequent limited extension of the inertial range, such DNS did not resolve the puzzle of longitudinal
vs. transversal scaling. The numerical results oscillate between evidence for different scaling properties
and for its opposit§67,69,74—76] The issue is complicated by the fact that longitudinal and transversal
structure functions possess different firlRe effects. For example, if69] it was shown that structure
functions of different order have different dependence on the viscous cut-off; this introduces ambiguity in
defining a common inertial range where power law is expected. We thus propose that until high resolution
isotropic measurements became available, all evidence for different scaling exponents for longitudinal
and transverse structure functions should be considered with suspicion.

2.7. Position-dependent scaling exponents

In some inhomogeneous simulations and experiments it was claimed that the measured scaling expo-
nents depended on the point of measurement within the flow ddgaih,22,77-8Q]iIf true, such finding
would deal a death blow to the idea of universality of the scaling exponents in turbulence. It should be
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stressed that in all the examples where such findings were reported the flow contained strong anisotropic
and inhomogeneous components and/or the scaling range was not sufficient to actually present direct
log—log plots for the structure functions vs.In some of these cases, scaling was extracted by using

the method called “extended self-similarity” (ES[5B]; the use of this method can be dangerous in
presence of anisotropic and inhomogeneous effects. Whenever strong anisotropies are present one has 1
distinguish among two scaling ranges. At scales larger than the shear length, the energy cascade mech
anism of the Kolmogorov theory is overwhelmed by shearing effd@22] Only for scales smaller

than the shear length is the meaning of anisotropic corrections to the isotropic K41 scaling theory well
posed. We argue below that the reported position-dependent isotropic exponents in the latter case stemn
from anisotropic components which appear with different amplitudes at different points in the flow. The
different “exponents” that were measured were not real exponents but the result of a crossover between
the isotropic and anisotropic corrections. Once the data are projected onto the isotropic sector the leading
exponents become position independent as expected.

3. Historical review: attempts at anisotropy
3.1. Batchelor’s approach

The first systematic approach to anisotropy in turbulence was suggested by Batchelor [81]946
Batchelor did not attempt to describe the most general form of anisotropy in turbulence, but instead
confined himself to the easier caseaxisymmetric turbulencdn axisymmetric turbulence the mean
value of any function of the velocity field and its derivatives is invariant to all rotations of the axes in a
given direction. Therefore, the anisotropy in axisymmetric turbulence is induced by a single direction in
space. We denote this symmetry axis by the unit vettBeing the easiest case of anisotropic turbulence,
axisymmetric turbulence was the main model for studying anisotropy in subsequent years.

Batchelor used the invariant theory in order to take the anisotropy veao account in the tensor
representations. His method is simple: add the vettorthe list of vectors in Robertson’s method. For
example, suppose we wish to construct an axisymmetric representation of the second-order correlation
functionC*#(r) defined in (3). Then, just as in the isotropic case, we create a scalar function by contracting
the two indices of*#(r) with two arbitrary vector andb, with the difference that now we assume that
the resultant scalar function depends on the unit vaectms well as on the other vectarsa andb. We
therefore look for an invariant representation of the scalar funefi@nn, a, b), which depends only on
the different scalar productsr,r-n,r-a, ... and the various determinarjtaal, [rnb] , ... . For some
reason, Batchelor decided to ignore the skew-symmetric parts and considered only the scalar products.
Using the fact thaC(r, n, a, b) is a bilinear function ok andb, Batchelor found that

c*b @y = Ar*rP + B5* + Cn*n® + Dn*r? + Er*nl |

whereA, B, C, D, E are functions of the amplitudeand of the scalar produét- n. Note that in this
expansion the number of unknowns has grown from two to five with respect to the isotropic expansion. It
would have been nine, had we taken the skew-symmetric parts into account. Indeed, a prominent charac-
teristic of anisotropic representations is that they are far more complex than their isotropic counterparts.
Using this sort of representations, Batchelor was able to generalize Khrman—Howarth results to the case
of axisymmetric turbulence. That is, after representing the second- and third-order correlation functions
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in terms of few scalar functions, Batchelor used the solenoidal condition and the Navier—Stokes equations
to derive some linear differential relations among them.

3.2. Chandrasekhar and Lindborg’s approaches

A somewhat more elegant approach to axisymmetric turbulence was offered a few years later by
ChandrasekhdB2]. Chandrasekhar’s treatment is similar to Batchelor’s in following Robertson’s work
[43]. Chandrasekhar took advantage of the skew-symmetric tetiédior creating a representation of
solenoidal axisymmetric tensors. He noted that the curl of an axisymmetric tensor automatically satisfies
the solenoidal condition. Therefore, by representing the second- and third-correlation functions as a curl
of auxiliary tensors, Chandrasekhar automatically solved the solenoidal equations, and was left with
the dynamical equations (which are derived from the Navier—Stokes equation) only. Chandrasekhar’s
dynamical equations are considerably simpler than those of Batchelor. Nevertheless, they are still very
complicated and this, perhaps, explains why there was no serious attempt to continue Chandrasekhar’s
work in subsequent years.

In 1995 there was another attempt to formulate the kinematics of homogeneous axisymmetric turbulence
in [83]. The representation in this paper was “experimentally oriented”, in the sense that the scalar
functions that are used can be measured directly in experiment. To accomplish that, one defines two
auxiliary unit vectors (that were also used®4]): e1(r) =n x r/|n x r|, e(r) = ey (r) x n. The triplet
(n, &1, &) is an orthonormal basis @f. But since it is made out afandn using invariant operations (i.e.,
vectorial products), it is invariant to simultaneous rotationsaridn, and thus it is invariant to rotations
of r alone arounah (because in these rotationgemains fixed). Therefore any tensor that is built from
these unit vectors and the products, r - n is necessarily an axisymmetric tensor. For example, in order
to represent the second-order correlation functéf(r), one writes

o B

C*(ry = Rin*n” + Rge%eé + Rgeie/lj + Ry[n"e; + n/fe§] + Ql[n‘“ef + nﬁei]

o p B 4
+ Qz[eﬁell + eée{] ,

where the six scalar functior®y, ..., R4 andQ1, Q> are functions o = r - n andp = |r x n|. Note
that this representation takes into account the skew-symmetric paiaf) using the scalar functions
Q1 andQo.

The major advantage in this representation is that the scalar functions have an immediate interpretation
in terms of measurable quantities. With respect to the example abaue pifw) are the velocity com-
ponents in the direction dh, e, 1), respectively, then due to the orthonormality of tripletes, e1),
we get

Ri=(uXu(x+r)), Rz={(vXvX+r)),
R3=(wXwX+Tr)), Ra= uX)vXx+r)),
O1=wXwX+r)), Q2= wXwX+r)).

Next, one uses the solenoidal condition to derive linear differential relations between the scalar functions.
One can also consider the triple correlation function and the velocity—pressure correlation function in
the very same method. This way one derives a representation for the dynamical equatitsiir pf
Mathematically speaking, this representation is no better than Batchelor’s representation, and may even
be considered worse than Chandrasekhar’s. This is because there is no reduction in the number of scala
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functions, and there is no simplification in the resulting equations. The motivation for this representation
is experimental without compelling physical or mathematical contents.

3.3. Case-specific approaches

The above-mentioned works can be vieweshatematiattempts to deal with the problem of anisotropic
turbulence, where a general method to describe the anisotropic (or, more exactly, axisymmetric) quantities
in turbulence is suggested. In that respect they differ from most research that followed on the subject,
which was usually confined to a particular model or a specific problem related to anisotropy.

3.3.1. Temporal return to isotropy

One such problem is the temporal return to isotropy in which one tries to understand the mechanisms
that drive a decaying turbulence which is initially anisotropic into being statistically isotropic. As in the
works of Batchelor and Chandrasekhar, the statistics was usually assumed to be spatially homogeneou:
to simplify the problem. The theoretical attempts to explain this phenomenon can be roughly divided
into two groups. The first group, which was initiated by Rd8&8&] in 1951, consists of attempts to
model the decay of anisotropy usioge-pointclosures. In that framework, one usually considers the
dynamical equation of the Reynolds stress, which issimae-pointorrelation function of the velocity
field C*(r) = (u*(x, H)uP(x, 1)). In a homogeneous, decaying turbulence, this correlation obeys the
following equation

0,C = ¢ — 25"
with
¢ = W p) + (WP p) + 2 [v(aﬂu“éﬂuﬂ) _ %ea“ﬂ] . 1)

Note thatC* is a second-rank-independent tensor that contains an isotropic part (which is its trace)
and an anisotropic (traceless) part. This explains the motivation behind the definitéf afich is to

capture the anisotropic part of the decay rat€'¢f. To solve Eq. (21), one must model thé&’ tensor.

Usually this has been done on a phenomenological basis. A systematic treatment to this problem was
offered by in[86]. In that paper, the authors suggested #iAtshould depend on time implicitly through

C*f, ¢ andv. Additionally, since¢*” is a dimensionless tensor, it must depend only on dimensionless
parameters. There are six such independent dimensionless quantities. The authors chose to represent the
in a way which isolates the property of anisotropy from other properties, and form the tensor

b =C"g? - 357, ¢P=C" = (WP) .

The tensob*” is proportional to the anisotropic, traceless pa ¢ and hence contains five independent
components. Itis often denoted as the “Reynolds stress anisotropy” or simply as the “anisotropy tensor”.
This tensor has become a central measure for anisotropy in turbulence and has been used extensivel
in experimental and numerical analysis of anisotropy in turbulence. The sixth component was defined
to be proportional to the isotropic part 6F (the energy) byR;, = ¢*/9v. With these dimensionless
quantities, ¢’ can be written ag*? = ¢*#(b, R;). They further simplified that expression by noticing

that if ¢*¥ depends solely oh and R; then it must depend on them in @otropic manner, since any
anisotropic dependence necessarily means/tfiatlso depends on the boundary conditions. To represent
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this isotropic dependence explicitly, they used the invariant thEland introduced the second- and
third-principal invariants of the traceless tenbor

Il =Tr[b?], Il =Tr[b% .
According to the invariant theorg*” can be most generally written as

o*F = par, 1, RHB* + (1, 11, R)) [b““b“ﬁ -1 ||5°ﬂ , (22)
and the problem is reduced to determining the functional formg(bf 111, R;) andy(ll, Il, R;). Based
on this formalism, there have been many attempts to model the fungidndl, R;) andy(l, I, R;)

to match experimental resulf88]. For example, Rotta’'s model is considered a linear model for the
anisotropy decay because he used

AL, Rj)=C1~ 30, »(l,IlI,R;)=0.
Consequently, the decay of the anisotropy tensor is given by
0,6 = —(E/q*)(C1 — 2)b™

which is a linear equation i*#, provided that the isotropic quantitiesg? are independent @f*#. This

sort of equation predicts that?(¢) is proportional tab*#(+ = 0) and that every component of the tensor
decays at the same rate. Experimentally, however, linearity is not supported. For example, it has been
observed experimentally that the return to isotropy is relatively rapid, at least at the beginning of the
process, when the invariant lll is negative, whereas the return to isotropy is fairly slow in the case where
the invariant is positivgd9].

The other line of research that was used to study the problem of the return-to-isotropy consists of at-
tempts to model the decay witivo-point closuredn these models, one considers the different correlation
functions of the velocity field across a separation vegtorstead of using the same-point correlations as
in the one-point closures. The mathematical structure here is usually much more complicated than that
of the one-point closures, but in return, the two-points models often provide a deeper understanding of
the physics involved.

An important example for such a model is given by Herii4j. In this work the author used the direct-
interaction approximation (DIARO] to study the decay of an axisymmetric turbulence into isotropy. The
DIA is a well-known truncation of the renormalized perturbation theory for turbulence. The perturbation
is done in the interaction strength parameter (which is set to unity in the end), and is truncated at the
second order—i.e., at the direct-interaction terms. The calculations are done in Fourier space. They
result in two coupled equations for the time evolution of the two-time, second-order correlation function
C*k, t,1) = (u*k, t)uP(—k, t')) and the response functia@*’(k, z, t'). The latter is defined as the
average of the change in the velocity field at times a result of an infinitesimal change in the forcing
at timer’. The equations fo€™P(k, 1, 1) andG**(k, 1, ') determine their time evolution. They are non-
linear, non-local integro-differential equations and are therefore very hard to deal with. In the isotropic
case the equations can be considerably simplified by noting thati¥6tk, ¢, ') andG*# (k, ¢, t') must
satisfy the solenoidal condition, which in Fourier space means that both tensors must vanish once we
contract any of their indices with the vectarlt is easy to see that under such a condite#’ (k, z, ')
andG‘“/f(k, t,t') can be represented in terms of one scalar function

CPk, 1,1y =clk,t,1YD* (&), Gk 1,1y =gk, 1,1y D* (k) , (23)
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where
D*P (k) = %P — k*kP . (24)

When turning to the axisymmetric case, the representation of the tensors become much more complex.
Instead of one scalar function for each tensor, two functions must be used corresponding to the two
scalar functions that where used by Batch¢®d] and Chandrasekh{?2] to describe the second-order
correlation function in real space. One uses the separating veetwt the anisotropy unit-vectorto

create two unit vectors which are orthogonakto

e10) Bk x n/lk xnl, ) B k x (k x n)/[k x (k x n)| . (25)

With these vectors;?(k, 1, ') was written as
CP, 1, 1) = c1(k, 1, 1)éhel + ca(k, 1, 1)ebe) (26)

andG*f(k, r, ") was written in a similar way using the functiops(k, z, ') andgo(k, ¢, t'). To parame-
terize the angular dependence of the scalar functions, one expands the four scalar functions in terms of
Legendre polynomials,

ik, t, )= cijlk,t,YPi(k-n), gk, 1) =" gijk,t,t)P;(k-n),
J J

obtaining an infinite set of coupled equations for the infinite set of functipp@&, 7, t') andg; ; (k, 7, t').

These equations were solved numerically after truncating alf th@ part of the expansion. Doing so,

one finds the time evolution of o(k, ¢, t') andg; o(k, t, ') and connects them to the physical observables

of the one-point closures, such as Rotta’s constant. The conclusions (partially numerical and partially
obtained after a long series of uncontrolled approximations) were that the return-to-isotropy is much
stronger at small scales (larggand that in some classes of initial conditions, the return-to-isotropy is
indeed a linear phenomenon.

This calculation was soon revised#1]. In this paper, the authors compared the DIA calculation to the
results of a numerical simulation of a homogeneous and axisymmetric turbulence. This time, however, the
Legendre polynomial expansion in the DIA calculation was extended to include alge theomponents.

Their conclusion was that the DIA calculation that included the 2 parts was in a good agreement

with the numerical simulation, especially tlie= 0 parts, provided that the initial anisotropy was small.
Additionally, the authors found that the previous calculaf@4l, which considered thg = 0 part only,

was quite inadequate to describe the process of return-to-isotropy—even in the case of weak anisotropy.

Other attempts to study the problem of return-to-isotropy in an axisymmetric turbulence used two-
point closures. For example, eddy-damped quasinormal Markovian approximation (EDRQR/93]
have been used if94]. In this closure scheme, one approximates the fourth-order cumulants of the
velocity field by a linear damping term of the third-order correlation function of the velocity field (the
eddy dumping). Additionally, a “Markov” assumption is used that allows one to integrate the history
integral in the equations and retain an equation forghme timesecond-order correlation function
Cc*(k, 1). As in the DIA model, this equation is formulated in Fourier space and is both non-linear
and non-local. To parameterize the axisymmetric correlation function in Fourier space, the authors used
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the following representation:
, 1 " R R
CPk. 1) = o DR E K, . 1) +n'n” D" (R D () F k. 1. 1)1
T

where herg: = k- n and D*# (k) is defined in Eq. (24). This representation incorporates the solenoidality
condition and is more elegant than (26) in the sense that the isotropic case is very easily recovered once
we setF (k, u, t) =0 and letE (k, u, t) becomeu-independent. Plugging this expansion to the dynamical
equation oflC*f (k, 1), the authors obtained two coupled equationg ek, u, t) andF (k, pu, t) which they

solved numerically for “medium” and “strong” anisotropic initial conditions. Their results indicate that

in the medium anisotropy cases, Rotta’s constant approaches a constant of the order of unity, qualitatively
agreeing with Rotta’s model and with the resyi8d]. On the other hand, in the strong anisotropy case

this constant does not show any saturation, indicating the failure of Rotta’s model. Additionally, their
results support the idea that the decay isotropy strengthens when the Ill invariant is negative.

3.4. Dimensional analysis in the presence of strong shear

An important discussion of the effects of strong shear on the energy spectrum was presé8ited in
In this paper, the author included anisotropic corrections in to the K41 framework extending the phe-
nomenological dimensional reasonings leading to (14). He considered the dependemigotmopic
mean observables, like the large-scale shear proportional to the large-scale mean gradi€qv):

Sy = ()" ™ <L, T y) :
Lo r

By further assuming that anisotropic corrections are “small” andlytic in the intensity of the shear
&, he proposed the following form for the anisotropic correction to the isotropic two-point longitudinal
structure functions, in the inertial ran{g

SOy ~ c@@)?P+ D@ @), (27)

where the coefficienb@ (7) takes into account the dependence on the direéfiothe anisotropic term.
The counterpart of (27) for the spectrum and co-spectrum in Fourier space is

(k%u; (Kyuy (—k)) ~ k=73 (5,- —~ k"—) + Agk= 3 (28)

where the first term on the RHS is the isotropic K41 scaling and the second term is the anisotropic
contribution withA;; being a traceless matrix depending on the details of the large scale shear.

In the past, most of the measurements of the anisotropic contributiofi®{@) concentrated on
the Fourier representation (289,11,12,95] In [9] the authors showed that the prediction (27,28) is
well verified in a wind tunnel flow. Later, many other experiments have confirmed this result in different
experimental situations (see for example the recent results for an homogeneous[ghe &ty recently,
amore extensive study of anisotropies has been carried out, considering also higher-order statistical objects
[7,10,33,34] The situation became immediately less clear: prediction (28) is not the end of the story
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(see below the section on anomalous scaling for anisotropic fluctuations). We show later that in the jargon
of the SO(3) decomposition the anisotropic part of a spherically averaged and solenoidal second-rank
tensor is made fronj = 2 contribution only. For this reason the dimensional analysis is often viewed as
predicting a 43 exponent for thg = 2 sector of the second-order structure function. This result was later
derived by several authors in terms of Clebsch variables, but again by dimensional re§36r8®]
Another, more systematic attempt to derive the scaling behavior of the second-order structure function in
a weakly anisotropic turbulent flow was presentef®Bi within a variable scale mean field theory. In that
paper the authors reached the conclusion that all anisotropic contribution to the second-order structure
function must scale- 3. To reach this result the authors had to simplify the tensorial structure of the
equations for the second-order correlation functions; we argue below that this uncontrolled simplification
biased the estimate of the anisotropic exponents.

4. The modern approach to anisotropy

In the past 10 years, the subject of anomalous scaling in turbulence has gained a great deal of attention,
as it became more and more accepted that in the infRelemit, the scaling exponents of the structure
functions in the inertial range do not conform with the classical prediction of the Kolmogorov theory.
The numerical values of these exponents, as well as the physical mechanism which is responsible for
the anomalous scaling, have been the target of an extensive experimental, numerical, and theoretical
research.

On the theoretical side, important progress was made by studying Kraichnan’s model of passive scalar
advection[100]. This model describes the advection of a passive scalar field by a synthetic, solenoidal
velocity field with a Gaussian, white-in-time statistics. The linearity of the equations for the passive scalar
field and the white-in-time statistics of the velocity field make it possible to write down a closed set of
equations for the same-time correlation functions of the passive $ta@r In [101,102] it was shown
that the solution of these equations can lead to anomalous scaling. The key point is that the homogeneous
solutions of these equations are scale invariant with non-trivial anomalous scaling exponents, which are
different from the dimensional scaling exponents that characterize the inhomogeneous, “forced” solutions.
Being usually smaller than the dimensional scaling exponent, the anomalous exponents dominate the
small-scales statistics of the passive scalar field. The homogeneous solutions are commonly referred to as
“zero modes”, and have been calculated to first-order perturbatively in[R@1s102]for the fourth-order
structure function and for all even structure functions in RE#3]. Exact computer assisted calculations
of the exponents of the third-order structure functions were presenfd@®4i Besides suggesting an
elegant mechanism for anomalous scaling, Kraichnan’s model also provided an example in which the
scaling of the anisotropic parts of structure functions is different from the isotropic scaling. i 6.
it was shown how such a thing can happen, by expanding the second-order structure function of the
passive field in terms of spherical harmonigs, (f). It was found that this expansion leads to a set of
decoupledj-dependent equations for the expansion prefactors. These equations can be easily solved by
a power law whose exponent is an increasing functiop. dfhese exponents are universal in the sense
that they are independent of the forcing and boundary conditions.

The authors ifil05] also noticed that the fact that the anisotropic exponents are higher than the isotropic
exponent neatly explains the isotropization of the statistics as smaller and smaller scales are probed.
Based on this example, it was suggestef.06] that a similar mechanism may exist in a Navier—Stokes
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turbulence. The authors expanded the second-order structure function in terms of spherical harmonics

SPM) =" S0 jm) (29)
j.m

and argued that in the case of weak anisotropy, one can linearize the equations for the anisotropic correc-
tions of the second-order structure function around the isotropic solution. In such a case, the kernel of the
linearized equation is invariant under rotations (isotropic), and as a result the equations for the different
(j, m) components decouple, and ateindependent—much as in the case of the second-order struc-
ture function in Kraichnan’s model. In a scale-invariant situation, this leads to anisotjeg@pendent
exponents

$20) ~ @?3(5)" ~

If one accepts that homogeneous turbulence enjoys universal statistics in the inertial range, then the
kernel of the above linearized equation is universal, and consequently so are the anisotropic scaling
exponents(.z). All of these statements could not have been proved rigorously (and still haven’t been proved
rigorously), yet they offered a new approach to understanding anisotropy in turbulence, an approach that
is explored in the rest of this review.

4.1. Mathematical framework

Experiments in fluid turbulence are usually limited to the measurement of the velocity field at one
single spatial point as a function of time. This situation has begun to improve recently, but still much
of the analysis of the statistical properties of Navier—Stokes turbulence is influenced by this tradition:
the Taylor hypothesigL07] is used to justify the identification of velocity differences at different times
with differences of longitudinal velocity components across a spatial length isdsllest of the avail-
able statistical information is therefore about properties of longitudinal two-point differences of the
Eulerian velocity field and their moments. Recent resegi8hhas pointed out the advantages of consid-
ering not only the longitudinal structure functions, but tensorial multi-point correlations of velocity field
differences

w(x, X', 1) = u(X', 1) — u(x, 1) ,
given by
FoL (X, XY, 135 -3 Xns Xy ) = (WX, Xq, 1) « oo Wi (X Xy, 1)) (30)

where all the coordinates are distinct. When the coordinates fuse to yield time-independent struc-
ture functions depending on one separation only, these are the so-called tensorial structure functions,
denoted as

§OHL-On (r) = ([uxl(X +1)— ual(X)] oy xX+4+r) — u’n )] . (31)

Needless to say, the tensorial information is partially lost in the usual measurements conducted at a single
point. One of the main emphases of the present review is that keeping as much of tensorial information
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as possible can help significantly in disentangling different scaling contributions to the statistical ob-
jects. Especially when anisotropy implies different tensorial components with possible different scaling
exponents characterizing them, careful control of the various contributions is required.

To understand why irreducible representations of the symmetry group may have an important role in
determining the form of correlation functions, we need to discuss the equations of motion which they
satisfy. We shall show that the isotropy of the Navier—Stokes equation and the incompressibility condition
implies the isotropy of the hierarchical equations which the correlation functions satisfy. We will use this
symmetry to show that every component of the general solution with a definite behavior under rotations
(i.e., components of a definit@educible representationf theSQ(3) group) has to satisfy these equations
by itself—independently of components with different behavior under rotations. This “foliation” of the
hierarchical equations may possibly lead to different scaling exponents for each component of the general
solution which belong to a differel@Q(3) irreducible representation.

4.2. Tensorial correlation functions and &%) irreducible representations: general theory

The physical objects that we deal with are the moments of the velocity field at different space—time
locations. In this section we follow Re27] which suggests a way of decomposing these objects into
components with a definite behavior under rotatif#g. It will follow that components with different
behavior under rotation are subject to different dynamical equations, and therefore, possibly, scale dif-
ferently. Essentially, we are about to describe the tensorial generalization of the well-known procedure
of decomposing a scalar functi&(r) into components of different irreducible representations using the
spherical harmonics

Y=Y ajm)Yjm() . (32)

j.m

4.2.1. Formal definition

Consider the correlation functidi” of Eq. (30). This:-rank tensor is a function ofispatial variables
andn temporal variables. It transforms ageasor fieldif F* is measured in two framdsand/ which
are connected by the spatial transformation (say, a rotatfos) 4*/x” then, the measured quantities in
each frame will be connected by the relation

F " (Re, Xy 105 5 Ry X Tn)
= Aalﬁl tee Aan[fﬂ F[fl.”/gn (Xl’ X/17 tl; .. ; X”’ X;l’ t’l)
= AP ponbn PP (AT, AR Ty AR, ATIR T (33)

We see that as we move from one frame to anotherfuthetional formof the tensor field changes. We

want to classify the different tensor fields according to the change in their functional form as we make
that move. We can omit the time variables from our discussion since under rotation they merely serve as
parameters. We thus defimé€x; }) = F({x;}, {t; =0}). Consider coordinate transformations that are pure
rotations. For such transformations we may simplify the discussion further by separating the dependence
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on the amplitude o%; from the dependence on the directionalityxpf
TH%(Xq, ..., Xp) = T* % (xq, ..., Xp; X1, ..., )A(p) ,

where here we have<n, i.e. we consider also the possibility thaip spatial locations in (33) coincide.
For pure rotations we may treat the amplitudes. . ., x, as parameters: the transformations properties
of 771 under rotation are determined only by the dependengg&’of* on the unit vector&y, ..., X,.
Accordingly, it seems worthwhile to discuss tensor fields which are functions of the unit vealgrs
Notice that in the scalar case we follow the same procedure: by restricting our attention to scalar functions
that depend only on the unit vectorwe construct the spherical harmonics. These functiondefired
such that each one of them has unique transformation properties under rotations. We then represent
the most general scalar function as a linear combination of the spherical harmonicsaégendent
coefficients, see Eq. (32).

The classification of the tensor field$1* (X4, ..., X,) according to their functional change under
rotations follows immediately from group representation thg68,109] But in order to demonstrate
that, we must first make some formal definitions. We defitjeto be the space of all smooth tensor fields
of rankn which depend orp unit vectors. This is obviously a linear space of infinite dimension. With
each rotatioml € SQ(3), we may now associate a linear transformatigron that space via relation (33)

[OAT]2 " (Rq, . . ., )A(p) = p%b1. .. fBupBr-Bu (A_l)A(l, o, A_l)A(p).

Using this definition, it is easy to see that the set of linear operétpfarnishes a representation of the
rotation groupSQ(3) since they satisfy the relations:

) ) —1 ,
0000 =0pynp, O =0 1.

General group theoretical considerations imply that it is possible to decomfipseto subspaces which

are invariant to the action of all the group operatérs Moreover, we can choose these subspaces
to beirreducible in the sense that they will not contain any invariant subspace themselves (excluding
themselves and the trivial subspace of the zero tensor field). F&8Qf8 group each of these subspaces

is conventionally characterized by an integer0, 1, 2, . . . and is of dimension +1[108,109] It should

be noted that unlike the scalar case, in the general spgcéhere might be more than one subspace for
each given value of. We therefore use the indexto distinguish subspaces with the sajné-or each
irreducible subspacg, j) we can now choose a basis witli 2 1 components labeled by the index

Bl (Xe, . Rp)s o m=—,

In each subspade, /), the group operators, furnish a 2/ +1-dimensional irreducible representation of

SQO3). Using the basiBg}J’.;;l"“” (X1, ...,X,), we can represent each operatgras a2 + 1) x (2j + 1)

matrix ij)m (A) via the relation

o1, Oy oG SN wPu pBLB o =10 —1a
[0ABL (xl,...,x,,)_/l“lﬁlu-/l“ﬂBq’jm (AR, .., A71Ry)

+J
— E () Llyeens In (o &
= Dm/m(A)Bqu/ (le 7X[7) .
m'=—j
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It is conventional to choose the ba8ig ;, such that the matriceBX,in (¢), that correspond to rotations

of ¢ radians around the 3 axis, will be diagonal, and givenlﬁ”ym(qS) = Spme™?. The 9", space
possesses a natural inner-product

ﬂl---ﬁn A

(T,U) = / dXp... d)A(p ST (R L .)A(p)galﬁl o 8o, U (Xy... )A(p)>l< ,

where g,z is the three-dimensional Euclidean metric tensor. By definition, the rotation mattiées
preserve this metric, and therefore it is easy to see that for £acBQ(3) we get

(OAT, O4U) = (T, U)

so that,0 4 are unitary operators. If we now choose the b8sis,, to be orthonormal with respect to the

inner-product defined above, then the matriDéjé)m (A) will be unitary.

Finally, consideiisotropic tensor fieldsAn isotropic tensor field is a tensor field which preserves its
functional form under any arbitrary rotation of the coordinate system. In other words, it is a tensor field
that is invariant to the action of all operatarg. The one-dimensional subspace spanned by this tensor
field is therefore invariant under all operatars and therefore it must be a= 0 subspace.

Once the basiB,_ ;,, has been selected, we may expand any arbitrary tensofietd” (xq, ..., X,)
in this basis. As mentioned above, for each fixed set of amplitugdes. , x,, we can regard the tensor
field F*1-*(xq, ..., X,) as a tensor field which depends only on the unit vectgss. ., X,,, and hence
belongs to7”,. We can therefore expand it in terms of the basis tensor fig]ds, with coefficients that
depend onxg, ..., xp,:

FLemna, o xp) = Y g xp) B G %) (34)
q.j,m

The goal of the following sections is to demonstrate the utility of such expansions for the study of the
scaling properties of the correlation functions. For the important case of tensorial structure functions (31)
the basis function depend on one spatial vector oréynd we can expand

S0 = 3 1,080 @)
q.jm

4.2.2. Construction of the basis tensors

4.2.2.1. The Clebsch—Gordan machinerA straightforward (although somewhat impractical) way to
construct the basis tensdsg ;, is to use the well-known Clebsch—Gordan machinery. In this approach
we consider the””), space as direct product spacef n three-dimensional Euclidean vector spaces with

p infinite-dimensional spaces of single-variable continuous functions on the unit sphere. In other words,
we note that/”) is given by

I =175 @ [,
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and therefore every tens@ri-*:(Xy ...X,) can be represented as a linear combination of tensors of the
form

vt Ve (R 9, (Rp)

where vl.“" are constant Euclidean vectors apdX;) are continuous functions over the unit sphere.
The three-dimensional Euclidean vector spa’;’é, contains exactly one irreducible representation of
SQ3)—thej =1 representation—whilyg, the space of continuous functions over the unit sphere,
contains every irreducible representation exactly once. The statemet’}hiata direct product space
may now be written in a group representation notation as

n p

,5”’;=1®l®...®1®(0691@2...)@...(0@1@2...) .

We can now choose an appropriate basis for each space in the product:

e For the three-dimensional Euclidean space we may choose
1 1
V2 V2

e For the space of continuous functions over the unit sphere we may choose the well-known spherical
harmonic functions.

€ = (17i70)7 e0:(0’ 07 l)’ € 1= (—l,—|,0) .

Once these bases have been chosen, we can construct a direct-product béis for

01...0p

A 7 — L% On & A
il...i,,(llyl)...(lpyp)(Xl’ e Xp) = e Y (X)) - Y, (Xp)

The unitary matrix that connects tBg, i, 11y)...1,,) Dasis to thd, ;,, basis can be calculated using the
appropriate Clebsch—Gordan coefficients. The calculation is straightforward but very long and tedious.
However, the above analysis enables us to count and classify the different irreducible representations of
a givenj. By using the standard rules of angular-momentum addition

sQl=I|s=-1l|®---BG+D,

we can count the number of irreducible representations of a giv&or example, consider the space
5”% of second-rank tensors with one variable over the unit sphere. Using the angular-momentum addition
rules we see

=110 0010203®...)
=080162081e283¢...)
=Bx0PpTxHPOx2)POx3)D... . (36)

We see that there are exactly thiiee 0 representations, sevge:= 1 representations and 9 representations
for eachj > 1. It can be further argued that the symmetry properties of the basis tensors with respect
to their indices come from the@ 1 =0 ® 1 & 2 part of the direct product (36). Therefore, out of the
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9 irreducible representation gf> 1, 5 will be symmetric and traceless, 3 will be anti-symmetric and
1 will be trace-full and diagonal. Similarly, the parity of the resulting tensors (with respect to the single
variable) can be calculated.

Once we know how many irreducible representations of gaate found in",, we can construct
them “by hand”, in some other, more practical method, which will be demonstrated in the following
subsection.

4.2.2.2. Alternative derivation of the basis function3he method found most useful in application
is based on the simple idea that contractions withy*?, ¢*f” and differentiation with respect te?
are allisotropic operationd27], isotropic in the sense that the resulting expression will havesdinee
transformation properties under rotation as the expression we started with. The proof of the last statement
follows directly from the transformation propertiesidf 6*#, %57,

The construction of aB, ;,, that belong ta’] now becomes a rather trivial task. We begin by defining
a scalar tensor field with a definifem. An obvious choice would be the well-known spherical harmonics
Y;n(F), but a better one is

i) =17 Y () .

The reason that we prefer,,, (r) to Y, (f), is thatd;,, (r) is polynomial inr (while Y, (f) is polynomial

in ) and therefore it is easier to differentiate it with respeat.t®nce we have defined;,, (r), we can
construct theB, ;,, by “adding indices” to®;,,(r) using the isotropic operations mentioned above. For
example, we may now construct

L r_jéaﬁ¢jn1(r)1
o r T2 T, (1),
o r 7Y@, (r), etc.

Note that we should always multiply the resulting expression with an appropriate powenairder to
make itr-independent, and thus a functionfodnly.

The crucial role of the Clebsch—Gordan analysis is to tell us how many representations from each type we
should come up with. First, it tells us the highest powdriofeach representation, and then it can also give
us the symmetry properties Bf; ;,, with respect to their indices. For example, consider the irreducible
representations of’>—second rank tensors which depend on one unit véctdhe Clebsch-Gordan
analysis shows us that this space contains the following irreducible representations spelled out in (36).
That is, for eacly > 1 we are going to have 9 irreducible representations. The indices symmetry of the
tensor comes from the‘% ® 93 =1®1=0 16 2 part of the direct product. This is a direct product
of two Euclidean spaces, so its a second rank constant tensor. We can mark the representation number ir
this space with the lettar, and the representation number of m%: 001020 3a...space with the
letter!. This way each representationﬁ'rﬁ of a given; will have two additional numberg, I), which
actually serve as the indgxthat distinguishes irreducible representations of the sambes index will
determine the indices symmetry of the tensor, while/timelex will determine the highest power bfn
the tensor. If we now recall that in the space of constant second-rank tesfgas’5 = 0@ 1 & 2, the
s = 0, 2 representations are symmetric while the 1 representation is anti-symmetric, we can easily
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off
q.jm’
— O 6y =i 5B,
(s,1)=(0, )), Bljm(r)—r 0P ®jm(r) ,
(s.0)=Lj-1. BY, &) =r Tt 0, a),
(s.0)=(Lj). BY, @) =rrof - "a“] Djm(r)
D= j+D, Bl &) =r7 0,0,
(5,)=(2,j -2, stm(r)—r—”za“aﬂ (),
(s.1)=(2,j— 1), 6jm(r)—r im0, 0F + P, 0%1@ ), (1)
(.0 =@ ). BY, @) =r 1o +ro"d(r)
(. 0)=(2,j+1), Bsﬁj (B = r TP B, 4 P 10 (1)
(.0)=@2j+2. By, &) =rT2%Po, ). (37)

construct theB

It should be stressed that theB are not exactly the same one we would have gotten from the
Clebsch—Gordan machinery. Forexample they are not orthogonal among themselves for the same value:
of j, m (although, they are orthogonal for different valuesjobr m). Nevertheless, they are linearly

independent and thus span a gignm) sector in they)2 space. The set of elgenfunctloris fcan

i, jm’

be further classified in terms of its properties under permutatlon of tensorial indjtasd in terms of
their parity properties, i.e. how do they transform underthe —r operation. Taking in to account both
properties we may distinguish:

Subset: Symmetric inx,  and with parity(—1)/:

By, ®. BY ®. B ©. B0,
Subsetl: Symmetric tox, f exchange and with parity—1)/+1:
By Jm(r) Bgf*jm(f) .
Subsetll: Antisymmetric too, f exchange and with parity—1)/+1:
By, ®. BY,®.
SubsetV: Antisymmetric to«, § exchange and with parity—1)
BS Jm(r)

The reader may find more details on the algebr&6{3) decomposition of second-order tensor in
Appendix A.

4.3. The isotropy of the hierarchy of equations and its consequences

In this section we follow Ref[27] in deriving equations of motion for the statistical averages of
the velocity and pressure fields differences. We start from the Navier—Stokes equations and show that
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their isotropy implies the isotropy of the equations for the statistical objects. Finally, we demonstrate
the foliation of these equations to different sectorg ofi. Consider the Navier—Stokes equations (2)

in a bounded domai®. In principle, these equations can be the basis for deriving the infinite linear
hierarchy of equations for the Eulerian correlation functions and for studying its properties under rotation.
Unfortunately, the relevant dynamical time scales are revealed only when the effect of sweeping is
removed. Therefore, we choose to work here with the transformation propdddd]in which the flow

is observed from the point of view of one specific fluid particle which is locateq at timezy. Let

p(Xp, to|t) be the particle’s translation at time

t
p(Xo, folt) =/ dsu[xo + p(Xo, fols), 5] .
0

We then redefine the velocity and pressure fields to be those seen from an inertial frame whose origin sits
at the current particle’s position:

V(Xo, folX, 1) = U[X + p(Xo, fol?), t] ,

n(Xo, fo|X, 1) = p[X + p(Xo, folt), 1] .
Next, we define the differences of these fields:

W% (Xo, t0lX, X', 1) = v*(Xo, t0|X, 1) — v*(Xo, f0|X', 1) ,

M(ro, to|X, X', t) = n(Xo, to|X, t) — n(Xo, to|X', 1) .
A straightforward calculation shows that the dynamical equation#fare:

o, WX, X', 1)

= — (0, + INI(Xo, tolX, X', 1) + v(®* + )W * (X0, to[X, X', 1)
— 0, #™"(Xo, t0|X, Xo, 1) #*(Xo, f0lX, X', t) — a;W“(xo, tolX', Xo, )W *(Xo, to|X, X', 1) ,
0, W *(Xo, tolX, X', 1) =, W ™*(Xo, to|X, X', 1) =0 . (38)

By inspection,;g merely serves as a parameter, and therefore we will not denote it explicitly in the
following discussion. Also, in order to make the equations easier to understand, let us introduce some
shorthand notation for the variablés,, x,/(, ):

Xi = Xe, Xpo 16), - Xk = (ks X, 16), - X = Ke, X)

Using (38), we can now derive the dynamical equations for the statistical momentgiol et (-) denote
a suitable ensemble averaging. We define two types of statistical moments:
FLI(X0IX 1y - ooy Xp) = (W7 (X0l X1) - # (X0l X))
A2 (Xo| X1, - -, X)) = (T (x| X2) W2 (X0l X2) . .. W (X0 Xn)) -
Eqg. (38) implies
atlf‘xl“'“” X0l X1, ..., Xp)
= =@y + A2 (X0IX1, -, Xn) = GV FI (X0l X, X1, ., Xi)

EAP . —
— 8 VI IR X1, X) A V@) + O ) F I (X0IK L, s X (39)
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with X = (xo, X', 1); X’ = (X, Xo, 1), With the further constraint;

AU 1 (X[ X1, -, Xn) =0, Qo FH (Xl X1, ., Xn) =0 .

Egs. (39), are linear and homogeneous. Therefore their solutions form a linear space. The most general
solution to these equations is given by a linear combination of a suitable basis of the solutions space. To
construct a specific solution, we must use the boundary conditions in order to set the linear weights of the
basis solutions. We shall now show that the isotropy of these equations implies that our basis of solutions
can be constructed such that every solution will have a definite behavior under rotations (that is, definite
j andm). But before we do that, note that in many aspects the situation described here is similar to the
well-known problem of Laplace equation in a closed donsin

V2 =0, ¥Yjo=0.

The Laplace equation is linear, homogeneous and isotropic. Therefore its solutions form a linear space.
One possible basis for this space is

¥im() =1 Y (),

in which the solutions have a definite behavior under rotations (belong to an irreducible representation
of SQ3)). The general solution of the problem is given as a linear combination of'ther), cf.
Eq. (32). For a specific problem, we use the valu& @f) on the boundary (i.e., we us€r)) in order to
set the values af; ,,.
To see that the same thing happens with the hierarchy (39), we consider an arbitrary gefition
A#'W| n=2,3,...}of these equations. We may write the tensor fiehd$), # in terms of a basis

Bq,jm:

FAI(XoIX1, . X)) = Y Fy (0, X1, X)BU (R0, X1, X)) (40)
q.j,m
—1) A A A
A (XX, K) = D H;’f;m(xo, Xl,...,xn)BfI’fjm)(ro, X1, ... X0) (41)
q.j,m

where here and below we use the shorthand notazﬁnm to denote th&Q(3) basis ofith-order tensors,
B*t~% Now all we have to show is that the pieces®f?, ™ with definite j, m solve the hierarchy

eahgtionsby themselvesindependently of pieces with differeptm. The proof of the last statement is
straightforward though somewhat tedious. We therefore only sketch it in general lines. The isotropy of the
hierarchy equations implies that pieces®f”, #"™ with definite j, m, maintain their transformations
properties under rotatioafter the linear and isotropic operations of the equation have been performed.
For example, if7 %1% (xg|X1, ..., X,) belongs to the irreducible representatighm), then so will

the tensor fieldsaéf“,/ml---“", a&fk)a§fk)ﬁf’“l---“n, although, they may belong to differest; spaces (i.e.,

have one less or one more index). Therefore, if we choose the [ﬁ%}g} to be orthonormal, plug

expansion (40) into the hierarchy equations (39), and take the inner produ@é@m we will obtain
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new equations for the scalar functidi’&(éj).m, H;”J)m

0, F™ (ro, X1, ..., X,)

11" q,jm

_ o1 o1 (n) (n-1) g
- Z<(a()€1) + a(xi))Hq/jm(rO’ X100 Xn)Byr s By jm)
q/

(x1) (n+1) ~ (n+1) (n)
- Z@fl Foim (o X, X1, ., Xu)By o7, By )
q/

(1) L (n+1) o (n+1) )
_Z<aﬂl F (rOaX9X15"'7Xn)Bq/jm ’Bq’jm>
q’

q'jm
2 2 (n) (n) ()
v D (@) 00 Fy (0. X1, X)BT B (42)
q/
(n) (n) (n—1)
q/
() (n) (n) (n=1)
Y @a Fy, (o, X1, .., X,0BY) By =0 (43)

!/

q

Note that in the above equations) denote the inner-product in the’) spaces. Also, the sums over
q’, j', m’ from (40) was reduced to a sum ovgronly—due to the isotropy. We thus see explicitly from
(42,43) the decoupling of the equations for differgni:.

At this point we remind the reader that in the case of the most used statistical objects in the analysis of
experimental and numerical data are the longituditiadorder structure functions:

S™(r) = ((ue(r)") .

For these objects the basis functions are simply the spherical harmonics &@®&ealecomposition
reads:

SO =Y S0 )Y jm () . (44)
Jj.m

A question of major interest for all that follows are the numerical values of the scaling exponents which
are defined by the power laws

(n) ¢
Sjm (r) ocre

4.4. Dimensional analysis of anisotropic fluctuations

The actual calculation of scaling exponents in the anisotropic sectors is difficult, and will be considered
inthe rest of this review. It is worthwhile to have a phenomenological guess based on dimensional analysis.
Unfortunately, once anisotropies are considered, dimensional considerations become tricky. Historically,
the first successful attempt to introduce dimensional considerations in anisotropic turbulence was the
approach discussed in Section 3.4. There the key role was played by the large-scale mean shear. Howeve
this work is limited to the analysis of second-order correlations, without discriminating among different
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j sectors. In light of th&sQ(3) decomposition it should be considered as a predictioij(ﬁrAnother
dimensional argument was presenteflli®] extending the considerations of Section 3.4. This argument
takes into account also the particular angular structure entering in the interaction between small-scale
fluctuations and large-scale shear. By decomposing the velocity digild a small-scale componemt,

and a large-scale anisotropic componéhtpne finds the following equation for the time evolutiorvof

0, Uy + vg0gvy + Updyvy + vpdsUy = —03,p + vAvy .

The major effect of the large-scale field is given by the instantaneous 8pgarwhich acts as an
anisotropic forcing term on small scales. We can write the balance equation for two-point quantities
(vs(X)v, (X)) in the stationary regime:

(Vs (XN vp()BRVy (X)) ~ (0, Usv5(X)vu(X)) -

The shear term is a large-scale “slow” quantity and therefore, as far as scaling properties are concerned,
can be safely estimated a(@uU“v(;(x/)vu(x)) ~ Dy (vs(X)v,(x)). The tensorD,; is associated to the

joint probability to have a given shear and a given small-scale velocity configurationD Jjieeing a
constant tensor can possess at most angular momentumjup 2 Similarly for three-point quantities

we may write:(vvvdv) ~ (0U vvv), which can be easily generalized to velocity correlation of any order.
One may therefore argue, by using simple composition of angular momgatad j — 2), the following
dimensional matching for structure functions in different anisotropic sectors:

Sy ~ rIDI- S50 () (45)

whereS}’fgl(r) is a shorthand notation for the projection on ftie sector of thenth-order correlation

function introduced in the previous secti (7,11 (r). In (45) with| D| we denote the typical intensity of

the shear ternb, 4 in the j =2 sector. From Eq. (45) one can obtain highexponents of the higher-order
structure functions from the lower-order structure functions of lower anisotropic sectors which appear on
the RHS. For example, the dimensional prediction for the third-order scaling exponenj ia theector,

/(3 .
C(ZS) can be obtained by the matchin@ff;(r) ~ r|D|Sé?z1(r) ~ e, By using the same argument and
the known scaling of the third-order correlation fpe= 0, 2, the scaling exponents of the fourth-order
correlation forj = 2, 4 can be estimated. The following expression is readily obtained for any order:

o(n) (” + J)
VT e
This formula coincides with prediction (27) fae=2 and;j =2. We will see below that both measurements

and closure calculations exhibit exponents which are anomalous, i.e. different from these dimensional
predictions.

(dimensional prediction) . (46)

5. Exactly solvable models

In this section we review the work done on anomalous scaling in the anisotropic sectors of exactly
solvable models. The first of these models is the Kraichnan model of passive scalar advection in which
the velocity field is rapidly varying in timg8,100,111] This model offers detailed understanding of the
anomalous scaling in all the anisotropic sectors both from the Lagrangian and the Eulerian points of view.
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The scaling exponents can be calculated however only in perturbation theory. The second model that we
consider is of passive advection of a magnetic figl?]. In this case one can compute non-perturbatively

the scaling exponents of the second-order correlation function in all the sectors of the symmetry group.
These two models show that the spectrum of scaling exponents is discrete and strictly increasing as a
function ofj. If this is true for systems with pressure, like the Navier—Stokes equation, it may lead to
problems of convergence of the integrals induced by the existence of the pressure terms. To this aim we
review below a third exactly solvable model in which pressure is used explicitly to keep an advected
vector solenoidal. It was shown that also here the spectrum is discrete and strictly increasing, and it
was explained how the putative divergences are avoided. The mechanism discovered here is most likely
also operating in the Navier—Stokes case. The last model reviewed in this section is the second-order
structure function in the Navier—Stokes problem, linearized for small anisotropies. Also in this case we
find a discrete spectrum of strictly increasing scaling exponents as a functjoMost of the results

here presented can also be reproduced within the Renormalization Group approach. We do not enter
here in this subject which would deserve a whole review by itself. The interested reader can find the
most important results for passive scalar advectidi1r3,114] for magnetic fields if115,116]and for

passive vectors ifi.17].

5.1. Anomalous scaling in the anisotropic sectors of the Kraichnan model of passive scalar advection

Kraichnan's model of passive scalar advection in which the driving (Gaussian) velocity field has fast
temporal decorrelation turned out to be a very important case model for understanding the anomalous scal-
ing behavior in turbulent advection, including the anisotropic sectors of turbulent scalar fields. We review
here the derivation that shows that the solutions of the Kraichnan equation fathteeder correlation
functions foliate into sectors that are classified by the irreducible representationsSaithesymmetry
group. A discrete spectrum of universal anomalous exponents is found, with a different exponent charac-
terizing the scaling behavior in every sector. Generically, the correlation functions and structure functions
appear as sums over all these contributions, with non-universal amplitudes which are determined by the
anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent,
and therefore for sufficiently small-scales local isotropy is always restored. We start by presenting the
Eulerian calculation which results in actual values of the scaling exponents (in perturbation {a8pry)

The Eulerian calculation of the anomalous exponents is done in two complementary ways. In the first
they are obtained from the analysis of the correlation functiorgradient fields The theory of these
functions involves the control of logarithmic divergences which translate into anomalous scaling with the
ratio of the innemndthe outer scales appearing in the final result. In the second way one computes the
exponents from the zero modes of the Kraichnan equation for the correlation functions of the scalar field
itself. In this case the renormalization scale is the outer scale. The two approaches lead to the same scaling
exponents for the same statistical objects, illuminating the relative role of the outer and inner scales as
renormalization scales. To clarify this further, REf9] presented an exact derivation of fusion rules
which govern the small-scale asymptotics of the correlation functions in all the sectors of the symmetry
group and in all dimensions. The purpose of the Eulerian calculation is twofold. On the one hand, we are
interested in the effects of anisotropy on the universal aspects of scaling behavior in turbulent systems. On
the other hand, we are interested in clarifying the relationship between ultraviolet and infrared anomalies
in turbulent systems. The two issues discussed in this subsection have an importance that transcend:s
the particular example that we treat here in detail. Having below a theory of anomalous scaling in all
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the various sectors of the symmetry group allows us to explain clearly the relationship between the two

renormalization scales and the anomalous exponents that are implied by their existence. Since we expeci

that Kolmogorov-type theories, which assume that no renormalization scale appears in the theory, are

generally invalidated by the appearance of both the outer and the inner scales as renormalization scales

the clarification of the relation between the two is important also for other cases of turbulent statistics.
The central quantitative result of the Eulerian calculation is the expression for the scaling e>é§’8nent

which is associated with the scaling behavior oftiie order correlation function (or structure function)

of the scalar field in thgth sector of the symmetry group. In other words, this is the scaling exponent

of the projection of the correlation function on tjik irreducible representation of ti$(d) symmetry

group, withn andj taking on even values only,=0, 2,...andj =0, 2, ...:

o _ [n(n+d)_(d+l)j(j+d—2)
i 2d+2) 2d+2)d—-1

} + 0() . (47)

The result is valid for any evep<n, and toO (¢) wheree is the scaling exponent of the eddy diffusivity
in the Kraichnan model (and see below for details). In the isotropic setterd) we recover the result

of [103]. Significantly, foréﬁ.z) we have a non-perturbative result that was derivdd @%], namely

1 Ad+e—Djd+j—2
552)=§<2—d—e+\/(2—d_6)2+ (d+e d)i(lJrJ ))’ i>2

valid for all values ofe in the interval(0, 2) and for all j >2. This exact result agrees with (47) after
expanding ta0 (¢) forn =2 and;j = 2.

It is noteworthy that for higher values pfand for every orden the discrete spectrum is a strictly
increasing function of. This is important, since it shows that for diminishing scales the higher-order
scaling exponents become irrelevant, and for sufficiently small scales only the isotropic contribution
survives. As the scaling exponent appear in power laws of the(iyp®<, with A being some typical
outer scale and < 4, the larger is the exponent, the faster is the decay of the contribution as the scale
diminishes. This is precisely how the isotropization of the small scales takes place, and the higher-order
exponents describe the rate of isotropization. Nevertheless for intermediate scales or for finite values of
the Reynolds and Peclet numbers, the lower-lying scaling exponents will appear in measured quantities,
and understanding their role and disentangling the various contributions cannot be avoided.

5.1.1. Kraichnan’s model of turbulent advection and the statistical objects

The model of passive scalar advection with rapidly decorrelating velocity field was introdé€@]n
In recent year$101-103,105,111,118,118]was shown to be a fruitful case model for understanding
multi-scaling in the statistical description of turbulent fields. The basic dynamical equation in this model
is for a scalar field' (r, t) advected by a random velocity fieldx, r):

[0, — koV2 4+ u(x, 1) - VIT (X, 1) = f(X, 1) . (48)

In this equationf (x, r) is the forcing. In Kraichnan's model the advecting fiel, 1) as well as the
forcing field f (x, ¢) are taken to be Gaussian, time and space homogeneous, and delta-correlated in time:

FOG O XL 1) =d(x—X)o(t — 1), W, Dul X, 1)) =wPx —x)s@t —1').
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Here the symbols-~ and (- - -) stand for independent ensemble averages with respect to the statistics
of f andu which are given a priori. We will study this model in the limit of large Peckd) (number,
Pe = U,A/xo, WhereU 4 is the typical size of the velocity fluctuations on the outer sdadéthe velocity
field. We stress that the forcing @t assumed isotropic, and actually the main goal of this section is to
study the statistic of the scalar field under anisotropic forcing.

The correlation function of the advecting velocity needs further discussion. It is customary to introduce
B (r) via itsk-representation:

] eD it d? . *ph
() = —/ | pd_fe P (p)exp(—ip-1), P (p) = [%ﬁ - ”pé’ ) (49)

Qi J1-
whereP*(p) is the transversal projecta?; = (d — 1)Q(d)/d andQ(d) is the volume of the sphere @h
dimensions. Eq. (49) introduces the four important parameters that determine the statistics of the driving
velocity field: 4 and/ are the outer and inner scales of the driving velocity field, respectively. The scaling
exponent characterizes the correlation functions of the velocity field, lying in the intgf/&]. The
factorD is related to the correlation function as follows:

WP (0) = Doyp(A° — ) (50)

The most important property of the driving velocity field from the point of view of the scaling properties
of the passive scalar is the “eddy diffusivity” tengb00]

Kty = 21w 0) — w*P(r)] . (51)

The scaling properties of the scalar depend sensitively on the scaling expdhantharacterizes ttre
dependence ok *#(r) o [A€ — /104p, for r > A, namely

op . € rorh

5.1.2. The statistical objects

In the statistical theory we are interested in the power laws characterizingdiygendence of the
various correlation and response functiong'é%, ) and its gradients. We will focus on three types of
quantities:

(1) “Unfused” structure functions df (x, r) are defined as

F (xa, Xy, o X Xo) = ([T (xa, 1) — T (X}, 1)]
X [T (X2, 1) — T(Xp, )] ... [T Xy, 1) — T(X,, D)) , (53)

and in particular the standard “fused” structure functions are
SO = (Tx+r1.0) - TX D" .

In writing this equation, we used the fact that the stationary and space-homogeneous statistics of the
velocity and the forcing fields lead to a stationary and space homogeneous ensemble of thE scalar



78 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43—-164

If the statistics is also isotropic, theﬂﬁ")(r) becomes a function afonly, independent of the direction

of r. The “isotropic scaling exponentgf)”) of the structure functions

+(n)
Sy acréo

characterize their dependence in the limit of largee, whenr is in the “inertial” interval of scales.
This range isl, n<r <A, L wherey = A(xo/D)Y¢ is the dissipative scale of the scalar field. When the

ensemble is not isotropic we define exponents (47) by exparﬂﬁi’ﬁg) according to
o glm
SPM =Y S Y @), S ) ocrt
jm
(2) In addition to structure functions we are also interested in the simultangiousder correlation
functions of the temperature field which is time independent in stationary statistics:

j(")({xl}) = (T(X1,t) T(X2,t)...T(Xy, 1)) , (54)

where we used the shorthand notatigy} for the whole set of argumentsiath-order correlation function
T X1, X0 . Xy

(3) Finally, we are interested in correlation functions of the gradient fi@ld There can be a number
of these, and we denote

%alman({XZ}) = <1—[[v“iT(Xl', [)]> .

i=1

The tensorz”--* can be contracted in various ways. For example, binary contractieas,, a3 = a4,
etc. withxy = o, X3 = X4, etc. produces the correlation functions of dissipation fielfl|2. Of particular
interest is the coordinate-independent tert$6? obtained by taking ak; = x:

Hotl...otn — yfﬁllmfln ({Xi — X}) . (55)

When the ensemble is not isotropic we need to take into account the angular dependeraseddhe
scaling behavior consists of multiple contributions arising from anisotropic effects.

5.1.3. The Eulerian calculation

The correlation functions of the gradient figld®) of Eq. (55) are tensors independent of the coordinates.
Nevertheless their calculation is somewhat heavy, and we do not reproduce it here; we refer the reader to
[29] where the calculation is presented in full detail. The final result of the calculation is for the projection
of H™ onto thej sector of theSQ(3) symmetry group reads

A I’l—f(-n)
J
H® o (_) , (56)
! n

where the proportionality constant is a tensor in the lim&A. The exponentg(.”) are the same as
those found below for the correlation function in which all the scales are within the inertial range. The
appearance of both renormalization lengths and the identity of the exponents in inertial and gradient
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objects is a consequence of the fusion rules that were explof@®]imvith some care. The correlation
functions7 ™ satisfy the Kraichnan’s equati¢h00]

n 1 n
—Ko Y VE+ 5 > K% —x)VEVL | 70 (x))
i=1

k=1
l n
=3 D o = x0T TP (i) (57)
fizk)=1

where{x;};.; « is the set off alk; with | from 1 ton, except of =i and/ = ;. Substitutingk *# (x) from
Egs. (50), (51) one gets

n n
—kY Vi 3 o —x0VivE | 70 ()

i=1 li#k)=1
1 ¢ -
=5 Z D(x; — )T " 2)({)(1}17&1',]() , (58)
li#k)=1

wherex = kg + D[4 — /°]. Here we used that in space homogeneous ¥&5q V; = 0 and therefore

n 2 n
Z Vil = Z Vl-z +
i=1 i=1

In this section we consider the zero modes of Eq. (57). In other words, we seek sofiftitiis }) which
in the inertial interval solve the homogeneous equation

n

o B
ViV) =0
{i#k)=1

n
Y K xi —x0)VEVEZ™ (%)) =0 . (59)
i£k=1

We allow anisotropy on the large scales. Since all the operators here are isotropic and the equation is
linear, the solution space foliates into sectgrs: corresponding the irreducible representations of the
SQd) symmetry group. Accordingly, we write the desired solution in the form

ZW(rh =Yz dnl

Jjom

Wherezj.’,’,z are functions composed of irreducible representatior8@#l) with definite j, m. Each of
these components is now expanded.im other words the notation of RgfL03],
(n) (n) (n) 2
Zin =Ej, +eGjl+0() .

Fore =0 Eq. (59) simplifies to

Y VZE) (b =0, (60)
i=1
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for any value ofj, m. Next, we expand the operator in Eq. (59)iand collect the terms a (e):
Y VEGU ({rih) = VaES (i) (61)
i=1

whereeV,, is the first-order term in the expansion of the operator in (59):

n

o«

ror.

Vo= Z |:506ﬁ |Og(l’ik) - ﬁ} V,-O(V]f ) (62)
i#k=1 ik

wherer;; = X; — Xx.

In solving Eq. (60) we are led by the following considerations: we want scale-invariant solutions, which
are powers of;;. We want analytic solutions, and thus we are limited to polynomials. Finally, we want
solutions that involve all tha coordinates for the functioﬁ(';,f; solutions with fewer coordinates do not
contribute to the structure functions (53). To see this note that the structure function is alinear combination
of correlation functions. This linear combination can be represented in terms of the difference operator
01(x, X') defined by

XN T D () = 7D ()i Dlx=x — 7 (D xg=x - (63)
Then,
S (X1 Xy -+ Xy X) =[] 61000 XD 7@ (i) (64)
[

Accordingly, if 7™ ({x;}) does not depend oxi, thend; (r;, r})7 ™ ({r;}) = 0 identically. Since the
difference operators commute, we can have no contribution to the structure functions from palfts of
that depend on fewer thancoordinates. Finally, we want the minimal polynomial because higher order
ones are negligible in the limit; < A. Accordingly,E}”nf with j <n is a polynomial of orden. Following
the procedure outlined in Appendix B we can write the most general forElj.’;@f up to an arbitrary
factor, as

Ej’;g =X XM BMI ] (65)

n,jm

where[...] stands for all the terms that contain fewer thranoordinates; these do not appear in the
structure functions but maintain the translational invariance of our quantities. Note that in this case we
carry the indexn in the tensor basis functions since the theory mixes basis functions of different orders.
The appearance of the teng®jf*; " is justified by the fact thaE(.’:,f must be symmetric to permutations

of any pair of coordinates on if\e one hand, and it has to bel()ng jmtkector on the other hand. This
requires the appearance of the fully symmetric tensor (B.5). In light of Egs. (61)—(62) we seek solution
for GE.”)({rk}) of the form

G =Y Hit, (uhlog(rin) + Hjm({rk)) | (66)
i#l
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whereHj’ﬁfn({rk}) andH;,, ({rc}) are polynomials of degrem The latter is fully symmetric in the coor-
dinates. The former is symmetric i, ; and separately in all the othét };; ;. Substituting Eq. (66)
into Eqg. (61) and collecting terms of the same type yields three equations:

Y VZHE =V, VES) (67)
i
y B oaoh 2 gk
e, TV Ve o "Ik jm
[d—2+|’lk'(Vl—Vk)]Hjm+W j’:":_T ,
> ViHjm =) KU . (68)
i

1k

Herel(i.’,‘n are polynomials of degree— 2 which are separately symmetric in thé coordinates and in
all the other coordinates excdpk. In Ref.[103] it was proven that foj = 0 these equations possess a
unique solution. The proof follows through unchanged for agy 0, and we thus proceed to finding the
solution.

By symmetry we can specialize the discussion t61, k = 2. In light of Eq. (68) we see tha’f}n%
must have at least a quadratic contributiomip This guarantees that (66) is non-singular in the limit
ri2 — 0. The only part 01‘1'711.1"21 that will contribute to structure functions must contain..r, at least

once. SinceHjlrfl has to be a polynomial of degreen the coordinates, it must be of the form

H]1n21 = ri%rﬁr%3 I B O T [ (69)

wherel. . . ]; 2 contains terms with higher powers ab and therefore do not contain some of the other
coordinatess. .. r,. Obviously such terms are unimportant for the structure functions. ehas

to be symmetric i1, ro andrs....r, separately, and it has to belong tojansector, we conclude that

the constant tensa® must have the same symmetry and must belong to the same sector. Consulting
Appendix B the most general form @fis

001002...00 __ 01002...00 %102 R %3%4...0p 10y S0y %3040y
CH172n = q B2 4 pAmR B ¢ N 5N 5N B (70)
i#£l>2

Substituting in Eq. (68) one find

resridrad ..y 1
12 12°12°3 ---'n 01...00 oq o ‘ 1,2
(d+2Hjy, + = —— B+ > ripr30 KT =1 12 -

On

Substituting Eq. (69) and demanding that coefficients of the i¢tm . r,,” will sum up to zero, we obtain

2

The coefficient is not determined from this equation due to possible contributions from the unknown
last term. We determine the coefficidntrom Eq. (67). After substituting the forms we find

( % ( og...0 A3%4... % ( ( ( og...0
46™%2rg3 . rgt[a Bt 4 bo™*2 B 0] = 62t B e L g2
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Recalling identity (B.6) we obtaih = (z,,;/4d)[1 — 4a]. Finally, we find thata is n, j-independent,

4= —2aad T whereas does depend onandj, and we therefore denote it &g ;

, @+ |
" T ad+d -1 "

In the next subsection we compute from these results the scaling exponents in all the sect@®®afthe
symmetry group.

5.1.4. The scaling exponents of the structure functions
We now wish to show that the solution for the zero modes of the correlation fundf;%hsi.e. AQ)

results in homogeneous structure functiGr;fQ. In every sectoy, m we compute the scaling exponents,

and show that they are independentofAccordingly the scaling exponents are deno&%’él, and we
compute them to first order in Using (63) and (64), the structure function is given by

() . . 7
Sr jm(rl, ..., Th)
nOzl noi,l
——
—Aal Aa" oq.. a,1+6 Aofl Aocn zx,oq(r r r r)[aBOtl On +b 50(,0(1BO(1 Op
=47 ... n]m E islis I, 1] n,jm n—2,jmd

i#l

whered! = r/' — 7', and the functiorf is defined as
O T v, 1) = (e — )" (g — )™ Infr — 1y
+ (7 =) =)™ In T =T (71)
= (ri =" (ri =)™ Inr; =7
=i =) =) InT = . (72)

The scaling exponent csf(") can be found by multiplying all its coordinates pyA direct calculation
yields

noi,l
(I’l) = . T n o1 Oy A% A%
STJm(,url,,ul’l,. )=u" Sij(l’l, F1;...) — 2eu |n,uZA1 R eV W
i£l
no il
01...0 ooy p%l---Un 2
X[aBnJm + by, j6™ B~ 2jm]+0(e)

= ,u”Sj(.rZ(l’l, T1;...) — 24 In /.tA?_l - AZ”

noi,l
—~—
x Y [aByE 4 by j0" MBS 1+ O()

i#l
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noi,l
———
Using (B.8), we find tha}_, [aB,f}}','j” + by, jo%™ B;f{éf‘j'?m] =[n(n—LDa+ b,l,j]BZ}J'.;,l“”, and therefore,
we finally obtain
P (urn, w1 ) = WL = 2eln(n — Da + by ;10 ) P71, T1: ) + O(E)
x(n)
=t S(T")(rl, f1;...)+ 0(62) .
The result of the scaling exponent is
-1 d+1
0y g =D @+
2d+2)d-1) 4d+2d-1
where we remind the reader that; was defined in Appendix B. From the above expression Eq. (47)
follows directly. This is the final result of this calculation.
It is noteworthy that this result is in full agreement with (56), even though the scaling exponents that

appear in these result refer to different quantities. The way to understand this is the fusion rules that are
discussed next.

Zn,j] + 0(62) ,

5.1.5. Fusion rules

The fusion rules address the asymptotic properties of the fully unfused structure functions when two or
more of the coordinates are approaching each other, whereas the rest of the coordinates remain separate
by much larger scales. A full discussion of the fusion rules for the Navier—Stokes and the Kraichnan
model can be found if68,59,105] In this section we quote the fusion rules that were derived in Ref.
[29] directly from the zero modes that were computedi@), in all the sectors of the symmetry group.
In other words, we are after the dependence of the structure fun&ﬁ&(rl,h; ...) on its firstp
pairs of coordinatesy, T'y; ...;r,, T, in the case where these points are very close to each other com-
pared to their distance from the othefp pairs of coordinates. Explicitly, we consider the case where
r, 71 .. 50, Tp <l py1, Tpy1s .. .5 My, Ty (We have used here the property of translational invariance
to put the center of mass of the firgt 2oordinates at the origin.) The full calculation is presentd@%,
with the final result (ta0 (¢))

p
(m) Fave o1 T Z Z » T 7
ST’jyn(rlv r17 ceey rnv rl’l) = ‘//l,m’ST’lm/(rl’ rl’ LI ] r]?v rp) .

[=lmax m’
In this expression the quantity; ,, is a tensor function of all the coordinates that remain separated by
large distances, and
Imax=max0, p+j—n}, j<n.
We have shown that the LHS has a homogeneity expoﬂﬁ@ntThe RHS is a product of functions with
homogeneity exponenef#p) and the functiong, ,,,. Using the linear independence of the functiﬁﬁm/

we conclude thay, ,,, must have homogeneity exponefryl) — él(”). This is precisely the prediction of
the fusion rules, but in each sector separately. One should stress the intuitive meaning of the fusion rules.
The result shows that whercoordinates approach each other, the homogeneity exponent corresponding

to these coordinates becomes simbj(}) as if we were considering p-order correlation function.
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The meaning of this result is thptfield amplitudes measured close-by coordinates in the presence
of n—p field amplitudes determined far away behave scaling-wiseplikield amplitudes in the presence
of anisotropic boundary conditions.

5.1.6. The Lagrangian approach to anomalous scaling

An elegant approach to the correlation functions is furnished by Lagrangian dynd2gssl25] In
this formalism one recognizes that the actual value of the scalar at pos#ioiimet is determined by
the action of the forcing along the Lagrangian trajectory from—oc to t:

fo
T (X0, 10) = / de(f (x(t), 1))y » (73)
with the trajectoryx(z) obeying

X(f0) = X0,  O,X(t) =u(x(t), 1) + v/ 2in(t) , (74)

andy is a vector of zero-mean independent Gaussian white random variaples;” (")) = 6*%o(t — /).

With this in mind, we can rewritﬁ(Tz”) of Eq. (53) by substituting each factorB{x; ) by its representation
(73). Performing the averages over the random forces, we end up with

@) ("
S7 (X1 -y X2n, 10) = dry - - - di,[p(x1(r1) — x2(t1)) - - - (75)

X P(Xon—1(ty) — X2, (1)) + permutation}s> . (76)
u,{n;}

To understand the averaging procedure recall that each of the trajectodbeys an equation of the
form (74), whereu as well as(y; }:, are independent stochastic variables whose correlations are given
above. Alternatively, we refer the reader to section I[1#5], where the above analysis is carried out
in detail. Here we follow the derivation of RgfL20]. In considering Lagrangian trajectoriesgrbups
of particles, we should note that every initial configuration is characterizedceyter of masssayR,
ascale g(say the radius of gyration of the cluster of particles) arsthapez. In “shape” we mean here
all the degrees of freedom other than the scaleRires many angles as are needed to fully determine
a shape, in addition to the Euler angles that fix the shape orientation with respect to a chosen frame of
coordinates. Thus a group ot positions{x; } will be sometime denoted below &R, s, Z}.

One component in the evolution of an initial configuration is a rescaling of all the distances which
increase on the average lik&*2; this rescaling is analogous to Richardson diffusion. The exponent
&, which determines the scale increase is also the characteristic exponent of the second-order structure
function[100]. This has been related to the exponenf (52) according t@, = 2 — ¢. After factoring
out this overall expansion we are left with a normalized ‘shape’. It is the evolution of this shape that
determines the anomalous exponents.

Consider a final shapgy with an overall scaleg which is realized at = 0. This shape has evolved
during negative times. We fix a scale- sop and examine the shape when the configuration reaches the
scalesfor the last time before reaching the scajeSince the trajectories are random the shap#ich
is realized at this time is taken from a distributioZ; Zo, s — sg). As long as the advecting velocity
field is scale invariant, this distribution can depend only on the sdiig.
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Next, we use the shape-to-shape transition probability to define an op#atay) on the space of
functions¥(2) according to

[5(s/50)¥1(Z0) = / 4Z)(Z: Zo, s — 50)P(2) .

We will be interested in the eigenfunction and eigenvalues of this operator. This operator has two important
properties. First, for an isotropic statistics of the velocity field the operator is isotropic. This means that
this operator commutes with all rotation operators on the space of funci@s In other words, if

0 4 is the rotation operator that takes the functib(z) to the new function?(4-1z), then 15 = 30 4.

This property follows from the obvious symmetry of the Kernét; Zg, s — sg) to rotatingZ and

Zo simultaneously. Accordingly, the eigenfunctionsyofan be classified according to the irreducible
representations dQ(3) symmetry group. Because in this section we are not computing explicitly the
exponents we do not need to present the precise form of the eigenfunctions and we will denote them for
simplicity asB;,, (Z). The second important property pfollows from thes-correlation in time of the
velocity field. Physically, this means that the future trajectorigsprticles are statistically independent

of their trajectories in the past. Mathematically, it implies for the kernel that

v(Z; Zg, s — s0) = / dZ1y(Z; Z1, s — s1)y(Z1; Zo, s1 — S0), S >S1> 50

and in turn, for the operator, that

¥(s/s0) = (s /s1)7(s1/50) -

Accordingly, by a successive applicatiom@$ /sg) to an arbitrary eigenfunction, we get that the eigen-
(2n)
values ofy have to be of the form,, ; = (s/s0)°T

.(2n)
s\

<5) ' qum(ZO) = / dzy(zZ; Zo, s — SO)qum(Z) - (77)

From Schur’'s lemmas one can prove that the eigenvalues do not depemdlonthe other hand, they
can still be a function of] but for simplicity of notation we do not explicitly carry tlgeindex in¢.

To proceed we want to introduce into the averaging process in (76) by averaging over Lagrangian
trajectories of the 2 particles. This will allow us to connect the shape dynamics to the statistical objects.
To this aim consider any set of Lagrangian trajectories that started-abo and end up attime=0ina
configuration characterized by a scadend center of magd®y = 0. A full measure of these have evolved
through the scalk or larger. Accordingly they must have passed, during their evolution fronytimeso
through a configuration of scale> so at least once. Denote now, (¢, R,Z; s — so, Zo) dt dRdZ
as the probability that this set of:2rajectories crossed the scaldor the last time before reaching
50, Zo, betweert andr + dr, with a center of mass betwe&uandR + dR and with a shape between
andz + dz.
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In terms of this probability we can rewrite Eq. (76) (displaying, for claiy—= 0 andr = 0) as
0
S(Tzn)(R0=0, 50, Z0,t =0) = fdz/ dt/dRMZn(t, R,Z;s — s0,Zo)
—00

0
X <f diy - - - dip[p(xa(r1) — X2(11)) - - - P (X2n—1(tn) — X2 (1))

+permg|(s; R, Z, t)> : (78)
u,ni

The meaning of the conditional averaging is an averaging over all the realizations of the velocity field
and the random; for which Lagrangian trajectories that ended up at tiree0 in R = 0, sg, Zg passed
throughR, s, Z at timet.

Next, the time integrations in the above equation are split to the interesl, ¢] and|[z, 0] giving rise
to 2" different contributions:

t t 0 t t
/ dtl.../ dtn+/dt1/ dtz---/ iy + -
—00 —0o0 t —00 —0o0

Consider first the contribution withintegrals in the domaip-oo, ¢]. It follows from the delta-correlation
in time of the velocity field, that we can write

t
</ dry - - - dip[p(X1(t1) — X2(12)) - - - d(X2n—1(tn) — X2, (1)) + permg|(s; R, Z, f)>

u,n;

1
= </ dry - - - dt,[Pp(x1(t1) — Xx2(11)) - - - d(X2n—1(tn) — X2n(1n)) + perms]>

u,n;

= SR, 5, 2,1)=5%"(s,2) . (79)

The last equality follows from translational invariance in space—time. Accordingly the contribution with
nintegrals in the domaifi—oo, ] can be written as

0
/dZS(TZ")(s,Z)f dt/dR,uzn(t,R,Z;s — 50, Z0) .
—00

We identify the shape-to-shape transition probability

v(Z; Zo, s — s0) = /0 dr / dRuy, (¢, R, Z; s — 50, Z0) - (80)
—00
Finally, putting all this added wisdom back in Eq. (78) we end up with
SS9 (50, Zo) = 1 + / dZ)(Z; Zo, s — 50)S\?" (5, 2) . (81)
Herel represents all the contributions with one or more time integrals in the dondh The key

point now is that only the term with integrals in the domaifi—oo, ¢] contains information about the
evolution of 2: Lagrangian trajectories that probed the forcing stakeccordingly, the term denoted by
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| cannot contain information about the leading anomalous scaling exponent belongingliat only of
lower-order exponents. The anomalous scaling dependence of the LHS of Eq. (81) has to cancel against
the integral containind, without the intervention of.

Representing now

2
S (50.Z0) = Y ag.jm(50) Bgjm(Z0) |

qjm
S5, 2) =Y ag jm(s)Bejm(2) |
qjm
1= IyjmBgjn(Zo) (82)

qjm
and substituting on both sides of Eq. (81) and using Eq. (77) we find, due to the linear independence of
the eigenfunctions,;,,,

.(2n)
&

N
aq,jm(sO) =lgjm + (%) Ag.jm (8).

To leading order the contribution df,;,, is neglected, leading to the conclusion tkiz¢ spectrum of
anomalous exponents of the correlation functions is determined by the eigenvalues of the shape-to-shape
transition probability operatar Calculations show that the leading exponent in the isotropic sector is
always smaller than the leading exponents in all other sectors. This gap between the leading exponent in
the isotropic sector to the rest of the exponents determines the rate of decay of anisotropy upon decreasing
the scale of observation.

The derivation presented above has used explicitly the properties of the advecting field, in particular
the 5-correlation in time. Accordingly it cannot be immediately generalized to more generic situations
in which there exist time correlations. Nevertheless, we find it pleasing that at least in the present case
we can trace the physical origin of the exponents anomaly, and connect it to the underlying dynamics.
In more generic cases the mechanisms may be more complicated, but one should still keep the lesson in
mind—nhigher-order correlation functions depend on many coordinates, and these define a configuration
in space. The scaling properties of such functions may very well depend on how such configurations
are reached by the dynamics. Focusing on static objects like structure functions of one variable may be
insufficient for the understanding of the physics of anomalous scaling. Important confirmation of this
picture have been found recently also for the case of passive scalars advected toylauent flow in
the inverse cascade regirfi26] and for the case of shell models for passive scalars advea@am

5.1.7. Summary and discussion

The main lesson from this subsection is that the scaling exponents form a discrete and strictly increasing
spectrum as a function ¢f This is the first example where this can be shown rigorously. The meaning
of this result is that for highgrthe anisotropic contributions to the statistical objects decay faster upon
decreasing scales. The rate of isotropization is determined by the difference betwgelepeadent
scaling exponents, and is of course a power law. The result shows that to first ordlee jrdependent
part is independent of the order of the correlation function. This means that the rate of isotropization of
all the moments of the distribution function of field differences across a given scale is the same. This is
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a demonstration of the fact that, &@(e) the distributions function itself tends toward a locally isotropic
distribution function.
The second lesson from this first exactly solvable example was the correspondence between the scaling

exponents of the zero modes in the inertial interval and the corresponding scaling exponents of the gradient
.(n)
fields. The latter do not depend on any inertial scales, and the exponent appears in the contlingtion

wherey; is the appropriate ultraviolet inner cutoff. We found exact agreement with the exponents of the
zero modes in all the sectors of the symmetry group and for all valuesTdfe deep reason behind this
agreement is the linearity of the fundamental equation of the passive scalar (48). This translates to the
fact that the viscous cutoff is n andj independent and also does not depend on the inertial separations
in the unfused correlation functions. This point has been discussed in ddti5128] In the case of
Navier—Stokes statistics we expect this “trivial” correspondence to fail. Nevertheless, many attempts have
been done to describe the matching between the inertial and dissipative scaling pr¢fp®1i2s,130]
for the isotropic sector. Finally, we note that in the present case we have displayed the fusion rules in
all thej sectors, using th@ (¢) explicit form of the zero modes. We expect the fusion rules to have a
nonperturbative validity for any value ef

An interesting modification of Kraichnan models has been recently propogEgilifwhere the scaling
properties of a passive scalar advected by a Kraichnan-like shear flow are investigated. The anisotropy
introduced by the shear breaks the foliations of the correlation functions equations. Nevertheless, the
authors have been able to explain the existence of a scaling range in the passive spectrum with anomalous
slope (i.e. different from the result obtained in absence of shear), for scales larger than the typical shear
length in the system. This anomalous slope is due to the fast advection of passive particles in the mean
shear direction.

5.2. Passively advected magnetic field

Another exactly solvable system of some interest is the case of passively advected magnetic field.
This model was first proposed [112]. It describes the advection of a magnetic figlck, #) by the
same Kraichnan stochastic velocity field described in Eq. (49). The equation of motion for the magnetic
field is

0,B(X, 1) + [u(x, 1) - VIB(X, 1) — [B(X, 1) - V]u(X, 1) = KVZB(X, 1) +f(x, 1), (83)

which has to be supplemented by the solenoidality condWieB(x, t) = 0. The source (“forcing”) term
f(x, t) is a solenoidal vector field that is responsible for injecting the magnetic field into the system at
large scales. The second-order moment of the source field here is a second-order solenoidal tensor

A1) PP 1) = 8t — 1) A% (%) , (84)

instead of a scalar. The tensét?(y) is used to mimic large-scale anisotropic boundary conditions and
is therefore taken to be anisotropic, analytiyiand vanishing rapidly fop > 1. Finally, the dissipative
termxV2B(x, t) dissipates the magnetic field out of the system at small scales.

Note that in order to keep the magnetic field solenoidal, Eq. (83) contains a “stretching” term
[B(x, 1) - V]u(x, t). This term may cause a “dynamo effect”, which is what happens when the mag-
netic field amplifies itself by extracting kinetic energy from the velocity figl@2]. Such effect can
destabilize the system, and prevents it from reaching a stationary state.
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Just as in the Kraichnan passive scalar case, we can use the fact that both the velocity and source field:
are white-noise Gaussian processes, and derive a closed set of equations for the simuithreroes
correlation functions of the magnetic field. For example, the equation of motion for the second-order
magnetic correlation function

C*P(r, 1) = (B*(x+r1,1)BP(x, 1))
can be easily derivefd12]:
0, = k"0 0, —[(3,K"5,C™ + (3,K")3,C]
+ @,0,KP)CH + 2v2CP + AP = T20C7 + AP (85)

where one has to add also the solenoidal condition for the magnetioagélﬁﬁ = 0 and the tensokK#*"

is the two-point velocity correlation (52). The solution of (85) was founflLit?]. It was shown there

that for O< ¢ < 1 no dynamo occurs, while fer> 1 a dynamo is developed. Consequently fer 6< 1,

the system may reach a stationary state where the correlation function of the magnetic field behaves
like a power law in the inertial range. [A12] the zero modes of the second-order correlation function
was calculated and its anomalous scaling in the isotropic sector was found fokary10 Notice that

for this passive vector model, the absence of any conservation law for the magnetic energy allows for
anomalous scaling already for the second-order correlation in the isotropic sector, at difference from
what happens in the passive scalar case discussed in Section 5.1.1. This was the first case where a full
non-perturbative analytical solution was presented demonstrating the possibility of having anomalous
scaling in hydrodynamic problems.

In Refs.[30,31] this analysis was generalized to all the sectors ofS¢3) group using thesQ(3)
decomposition. Here we review the results presented in[B@f.where a systematic non-perturbative
study of the solutions of (85) was given in @l m) sectors of th&Q(3) group. As usual, itis advantageous
to decompose the covarian€é&”’ in terms of basis functions that block-diagonalize the angular part of
the operatofl, which is invariant to all rotations. In additiof, is invariant to the parity transformation
r — —r, and to the index permutatian, ) < (8, v). Accordingly, T can be further block-diagonalized
into blocks with definite parity and symmetry under permutations.

In light of these consideration we seek solutions in terms of the decomposition given in (34):

chrn=Y c@, 0B’ ® . (86)

q,J,m
As discussed in Section 4.2.2 the nine basis functions can be grouped in four sub-groups depending
on their symmetries under parity and index permutation (37). It should be noted that not all subsets
contribute for every value gf Space homogeneity implies the obvious symmetry of the covariance:
C*(r, 1) = CP*(—r, 1). Therefore representations symmetriatg exchange must also have even parity,
while antisymmetric representations must have odd parity. Accordingly, jgveme associated with
subsets | and lll, and od& are associated with subset Il. Subset IV cannot contribute to this theory due
to the solenoidal constraint (see Appendix A).

5.2.1. The matrix representation of the operator
Having the angular basis functions we seek the representation of the openatibiis basis. In such
a representatioi is a differential operator with respect toonly. In Appendix A of[30] it is shown
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how T mixes basis functions within a given subset, but not between the subsets. In finding the matrix
representation of we are aided by the incompressibility constraint. Consider first subset | made of the
four symmetric and withi—)/ parity basis functionsB;‘fgjm(f) withg =1,5,7, 9in a givenj, m sector.

N : - . 2 2
To simplify the notation we denote the coefficients according o = Céj)m(r), b(r) = C§j3n(r),
Cﬁ)m (r)andd(r) = Cé?)m (r). Primes will denote differentiation with respectrto

In this basis the operatdrtakes on the form

c(r) =

" /

a a a

n b// b/ b

TIC(r,)]=T1 ¢ + T2 c + T3 c (87)
d’ d d

On the RHS we have matrix products. In addition, the solenoidal condition implies the following two
constrains o, b, ¢ andd (cf. the appendix of27]):

b
O=a' +2% 1y — 22 v~ 5,
r r r
b ¢ d
0=b'+3-+-+(G-Dd' -G -D( -2~
r r r
Using these conditions one can brifigandT, to diagonal forms,

4
[(Dr€ +x) +eDr]1,

r

T1=2(Dr‘+x)1, T2

wherel is the unit matrix.T3 can be written in the form
T3 = Dr<?Q(j. ) + kr2Q(j, 0).

The explicit expression for the four columns@f;, ¢) can be found if30]. In AppendiAx B of[30] the
two remaining blocks (subsets I, 11l after the list (37)), in the matrix representatidnasfa function
of j have been also investigated. The single b#sis,, (subset IV) cannot appear in the theory since

Cg)m = 0 by the solenoidal condition (cf. appendix[@f7]). Lastly, there are no solutions belonging to
the j = 1 sector. This is due to the fact that such solutions correspond to subset Il. In this subsetlthe
solenoidal condition implies the equatiqni:/dr)cé%n + 3Céi)n/r =0, orcéﬁzn o r~3 which is not an
admissible solution.

5.2.2. Calculation of the scaling exponents

Before turning to the computation of the exponents, one should consider the existence of a stationary
solution forr — oo. In [112] it was showed that there is not dynamo in the isotropic sector as long as
e < 1. In[30] it has been demonstrated that for the same valuestbe dynamo effect is absent also
in the anisotropic sectors. The reader is referrefB@) for details on this subject. In the absence of a
dynamo effect, we can consider a stationary state of the system, maintained by the forcifig,term
The covariance in such a case will obey the following equation:

Tco? + A =0 .

ap
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Deep in the inertial range we look for scale-invariant solutions of the above equation neglecting the
dissipative terms. The most general scale-invariant solution can be expressed as a linear superposition o
homogeneous (zero modes) and non-homogeneous solutions of the above equation:

CoP(r) = Cpb (1) + Cob ().

non-h

In particular, only zero modes can carry anomalous scaling, being the scaling properties of the non-
homogeneous solutions fixed by the dimensional matcﬁfﬁg‘“f’ ~ A*P_ Therefore, the existence of a
leading anomalous scaling contribution to small-scales magnetic fluctuations is connected to the existence
of at least one zero mode with a scaling exponent smaller than the dimensional estimate.

The calculation of the scale-invariant solutions becomes rather immediate once we know the functional
form of the operatof in the basis of the angular tens@g ;. Using expansion (86), and the fact that
is block diagonalized by such an expansion, we get a set of second-order coupled ODE'’s for each block.
To demonstrate this point, consider the four-dimensional block afeated by the four basis tensors
By, jm Of subset |. According to the notation of the last section, we denote the coefficients of these angular
tensors in (86), by the four functiomasr), b(r), c(r), d(r):

c* ) = a(r)Bgij + b(r)B;‘fjm + c(r)Bijm + d(r)Bgij NI

where (- -) stand for terms with othef, m and other symmetries with the sarmen. Let us first consider
the case wheré> 0. According to (87), well within the inertial range, these functions obey

" /

a a a

b’ 4 b
Tie=0) [ [+Tetc=0 [ [ +Taw=0| | [=0. (88)

d” d’ d
Due to the scale invariance of these equations, we look for scale-invariant solutions in the form
a(ry=ars, b(r)=brc, d(r)=crs, d(r)=drs, (89)

wherea, b, ¢, d are complex constants. Substituting (89) into (88) results in a set of four linear homoge-
neous equations for the unknowins, c, d:

[E(€ = DT1(x =0) + (T2 = 0) + T3k = 0)] =0.

QU o &

The last equation admits non-trivial solutions only when
defé(¢ — DTa(k=0) + T2k =0) + T3(k =0)] =0 .

This solvability condition allows us to expreéss a function of ande. Using MATHEMATICA one
finds eight possible values 6f out-of-which, only four are in agreement with the solenoidal condition:

D)= —te-3xi/H@ pr2/Ke)). i=123.4,

K(e, j) =e* =283+ 263 + 2632 — 462 — 36% — 4e? j2 — 8ej?
—8¢j +4c+16j + 16j2+ 4,
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H(e, j)=—€>—8c+2cj°+2j+4j°+4j +5. (90)

Not all of these solutions are physically acceptable because not all of them can be matched to the zero-
mode solutions in the dissipative regime. To see why this is so, consider the zero-mode equation for
e=0:

(2k + 2D)V°C=0 . (91)

The main difference between the-0 case and the> 0 case is thatin the former the same scale-invariant
equation hold®othfor the inertial range and the dissipative range. As a result, #00, the zero-mode
scale with the same exponents in the two regimes. These exponents are given simply by (88) Qyith
because for =0 the zero-mode equation with=0 is the same as (91) up to the overall fadloh( D + )
which does not change the exponent. Eer0th solutions should be valid for the dissipative regime as
well as for the inertial regime, ruling out the two solutions with negative exponents in (90), for they will
give a non-physical divergenceas> 0. Assuming now that the solutions (including the exponents) are
continuous ire (and not necessarily analytic!), one finds that also for finialy the positive exponents
appear in the inertial range (an exception to that isjtke0, to be discussed below). Finally, there are
two branches of solutions corresponding to th¢ &énd () in the square root.

P =-3-Jec+ %\/H(e, J)+£2/K(e j). subsetl.

Note that forj =0, only the branch with the- sign under the square root exists since the other exponent
is not admissible, being negative o 0, and therefore excluded by continuiet)(f) however becomes
negative as increases. Fof > 2 both solutions are admissible, and the leading is that one with the minus
sign in the square root.

Letus also discuss the behavior of the zero modes in the dissipative regime@oHere the dissipation
terms become dominant, and we can neglect all other terisTihe zero-mode equation in this regime
becomes 2v2C* = 0, which is again, up to an overall factor, identical to the zero-mode equation
with k = 0, e = 0. The solutions in this region are once again scale invariant with scaling exponents
65-2)|5=o = j,j — 2. As expected, the correlation functi@’(r) becomes smooth in the dissipative
regime.

In [30] the computation of the exponents corresponding to subsets Il and Il is also presented. The
resultis

ED =3 Lot 311004+ @4 2j% + 2je+ 4] + 42, subsetll,

£V =3 Lot 124204144724 2% +4j+2j, subsetlll.

For j = 0 there is no contribution from this subset, as the exponent is negative. After matching the zero
modes to the dissipative range, one has to guarantee matching at the outér $teeondition to be
fulfilled is that the sum of the zero modes with the inhomogeneous solutions (whose exponerd} are 2-
must giveC(r) — 0 as|r| — L. Obviously, this means that the forcing must have a projection on any

_ . 2 -
sectorBy ;, for whichC";, is non-zero.
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5.2.3. Summary and conclusions

The results of this section should be examined in the light of the previous section on passive scalars.
That passive scalar case afforded only perturbative calculation of anomalous exponents in all anisotropic
sectors. The present example offers exact, non-perturbative calculations, of the whole spectrum of scaling
exponents that determines the covariance of a vector field in the presence of anisotropy. The main conclu-
sions are: (i) scaling exponents of the second-order magnetic correlation functions are anomalous; (i) they
are strictly increasing with the index pbf the sector, meaning that there is a tendency toward isotropiza-
tion upon decreasing the scales of observation. The equations for the magnetic covariance foliate into
independent closed equations for each set of irreducible representationsS@&egroup. Moreover,
scaling properties of the zero modes do not show any dependence qrinitiex labeling projections
on different irreducible representations of ta€(3) groups for each fixed;, m). The consequence of
the latter property is that transversal and longitudinal correlation have the same scaling exponents within
each anisotropic sector.

5.3. The linear pressure model

In this subsection we discuss the scaling exponents characterizing the power-law behavior of the
anisotropic components of correlation functions in turbulent systems with pressure, exploring the funda-
mental question whether also for such systems the scaling exponents incrpseesses, or they are
bounded from above. The equations of motion in systems with pressure contain nonlocal integrals over
all space. One could argue that the requirement of convergence of these integrals bounds the exponent:
from above. It is shown here on the basis of a solvable model (the “linear pressure model”), that this is
not necessarily the case. The model described here is of a passive vector advection by a rapidly varying
velocity field[32]. The advected vector field is divergent free and the equation contains a pressure term
that maintains this condition. The zero modes of the second-order correlation function are found in all
the sectors of the symmetry group. We show that the spectrum of scaling exponents can incregjase with
without bounds, while preserving finite integrals. The conclusion is that contributions from higher and
higher anisotropic sectors can disappear faster and faster upon decreasing the scales also in systems wit
pressure. To demonstrate that, consider a typical integral term of the form,

/ dyG(r —y)C(y) . (92)

HereG (r) = —1/(4xr) is the infinite domain Green function of the Laplacian operator,@dis some
statistical object which is expected to be scale invariant in the inertial rangér)lhas an infrared cross
over at scald (or equivalently, the integral has an infrared cutoff at staJeéhen the above expression
will not be a pure power law of, not even inside the inertial range. Then how is it possible that such
an expression will cancel out a local term @fr), as is required by the typical equations of motion?
This puzzle has led in the past to the introduction of the concept of “window of loc§li8d,134] The
window of locality is the range for the scaling exponents in which no divergence occurs, even if the cross
over lengthL is taken to infinity. For these exponents integrals of type (92) are dominated by the range
of integrationy ~ r and are therefore termed “local”. In a “local” theory no infrared cutoff is called for.

In this subsection we present solutions for the scaling exponents in the anisotropic sectors of a linear
model of turbulence with pressure. This model reveals two mechanisms that allow an unbounded spectrum
of scaling exponents. First, a careful analysis of the window of locality in the anisotropic sectors shows
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that it widens ag increases. We always have a leading scaling exponent within the window of locality.
Secondly, there is a more subtle mechanism that comes to play when sub-leading exponents exist outside
the window of locality. In these cases we show that there exist counter-terms in the exact solution (not
the zero modes!) which maintain the locality of the integrals. The bottom line is that in these models the
anisotropic exponents are unbounded from above leading to a fast decay of the anisotropic contributions
in the inertial range. The linear pressure model captures some of the aspects of the pressure term in
Navier—Stokes turbulence, while being a linear and therefore much simpler problem. The non-linearity
of the Navier—Stokes equation is replaced by an advecting Kraichnamfield) and an advected field

v(x, 1). The advecting fieldi(x, 7) is taken, as before, the Kraichnan field (49). Both fields are assumed
incompressible. The equation of motion for the vector fi€l(k, 1) is

0" + uMd v + 0% p — k&P = f* (93)
o,v*=0,u*=0. (94)

Inthis equationf(x, ) is the same as the one in Eq. (83). Analyticity©f ¢) is an important requirement.
It means that*# (x) can be expanded for smél| as a power series kf; as a result its leading contribution
in thej-sector is proportional te/ —2, given byd*o/x/ Y, (X). To see that this is the leading contribution
the reader can consult the general discussion of the construction of the irreducible representations in
Ref.[27]. All other analytic contributions contain less derivatives and are therefore of higher ovder in
In order to derive the statistical equations of the correlation functiarif ¢, z), we need a version of
(93) without the pressure term. Following the standard treatment of the pressure term in Navier—Stokes
equation, we take the divergence of (93) and arrive at,

0,0,u"v" + ??p=0.

The Laplace equation is now inverted using the Green function of infinite domain with zero-at-infinity
boundary conditions:

P00 = [ Ay Gix—yo00 ')
With this expression fop(x), EQ. (93) can be rewritten as
0, v*(x, 1) + ut(x, t)aﬂv“(x, ) — a‘;‘x) / dyG(x — y)a‘,éﬂu”(y)vv(y) — k%X, 1) = A, 1) .

In [32] the equation of motion for the two-point correlation functiaii®(r) = (v*(x + r)vf(x)) was
found:

0,0~ T70) TP+ [ QyG(r— y)eho, T ()
+ / dy G (—r — )33, TP (y) — 2k0%C*F(r)
= W*x+ 0 fF) + W 1 x+n)

where to simplify the equations we have defined an auxiliary fundtitfr):

TP (r) = 0 (v* (x + Nu ()P (%)) .
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This equation is identical to the equation for the second-order correlation function in the usual Navier—
Stokes turbulence, provided thétis replaced with/* in the expression above. Indeed, the vexing problem
that we face is being made very clear: if the triple correlation function has a power-law dependence on
with an arbitrarily large exponent, how can the integral converge in the infrared? One possibility is that the
scaling exponent df *#(r) is sufficiently low, making the integral convergent. The other possibility is that
the correlation function is scale invariant only in the inertial range and vanishes quickly after that, which
is equivalent to the introduction of an infrared cutoff. However the integral terms in the equation probe
the correlation function throughout the entire space. Therefore, a cross over behavior of the correlation
function at the outer scale, seems to contradict a pure scaling behavior of the correlation function in
the inertial range itself. This in turn implies the saturation of the anisotropic scaling exponents.

To proceed, we use the fact that the field, ¢), as well as the forcing, are Gaussian white noise with
correlation given by Eq. (52). This enables us to expi&ésr) and the correlation of the force in terms
of C*#(r) and A*#(r). One can use the well-known method of Gaussian integration by [snghich
leads to the final equations (see also append[32}):

0,y =T (r) + T/ (1) — / dy G (r — y)o'a, T (y)

— / dy G (—r — y)o*0, TP (y) + 210%C*F(r) + A (r) , (95)
off 1 uy off 1 o uv o
T = — EK 0,0,C™(r) + 56(0 dyG(r — y)o,[K"(y)8,0,C"(y)]
1 ) oT
-5 [ dGmetkm po,8,CT -y (96)

These equations have to be supplemented with two more equations that follow directly from the definition
of C*A(r):

0,c**n=0, c*my=ch(r).

Finally, we note that Egs. (95,96) can be interpreted in a transparent way, utilizing two projection operators
which maintain the RHS of Eq. (95) divergence free in both indices. To define them, let us consider a
tensor fieldx*#(r) which vanishes sufficiently fast at infinity. Then the two projection operatprand

g are defined by

ZR SUOED CUG TN / dyG(r —y)a, X" (y)

Prx(r) = x*P(r) - o, / dy G (r — )3, X"(y) .

We observe tha?, X*f and#r X*# are divergence free in the left and right indices, respectively. Using
these operators we can rewrite Eqgs. (95,96) in the form

0,C*(r) = PRT (r) + PRTP*(—r) + 26%C* (r) + A% (r) , (97)

1. 1 ) ot
T (1) = —Eg)LKWaNaVC“/”(r) -5 / dy G (y)o o, [K" (y)3,0,C"(r — y)] . (98)
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The projection in Eq. (98) guarantees 4t (r) is divergence-free in its left index, while the projection
in Eq. (97) guarantees divergence freedom in the right index.

Not all the terms in these equations are of the same nature. The integrals due to the projection operator
are easy to deal with by applying a Laplacian on them. For exa@fa 7 (r) =02T*F (r) — 053, T*(r).
On the other hand, there seems to be no way to eliminate the last integral in Eq. (98), and therefore we
shall refer to it as the “non-trivial integral”. Only when the velocity scaling exponents in (52)sbeand
e=2ittrivializes: the integral vanishes whes:0 and is proportional t6*# (r) whene=2. Unfortunately,
in these extreme cases also the projection operator trivializes, and the effect of the pressure cannot be
adequately assessed. We prefer to study the problem for a generie f@uehich the incompressibility
constraint and the pressure terms are non-trivial.

We deal with this problem head-on in Section 5.3.4. Due to the non-trivial integral, we will not be able
to provide a full solution o*#(r) but only of the zero modes. However, before doing so, we would like
to study a model that affords an exact solution in order to understand in detail the issues at hand. In the
next section, we therefore consider a simplified model of the linear pressure model, which nonetheless
poses much of the same riddle.

5.3.1. An exactly solvable toy model

We construct a toy model which is inspired by Egs. (95,96) for the correlation function in the linear
pressure model. Within this model we demonstrate the strategy of dealing with the non-local pressure
term. Since it is a simplification of thetatisticalequation of the linear pressure model, the toy model has
no obvious underlying dynamical equation.

In the toy model, we are looking for a “correlation functiof”(r), whose equations of motion are:

0,C*(r)= — K’”(r)aﬂavC“(r) — a?,) / dxG(r —x)0, K" (x)0,0,C"(x)

usv

+ k2C*(r) + A*(r/L) ,
2,C%(n =0 (99)

Here A%(x) is a one-index analog of the correlation function of the original fort#§x). Accordingly,
we take it anisotropic, analytic it?* and rapidly vanishing fox > 1. As in the previous model, also here
analyticity requires that the leading contribution for sxal proportional td*x/ Y ;,, (%) in thej-sector.
Accordingly it is of orderc/ L.

The toy model is simpler than the linear pressure model in two aspects: First, the “correlation function”,
C%(r) has one index instead of two and therefore can be represented by a smaller number of scalar
functions. Second, the unpleasant non-trivial term of the linear pressure model is absent. This will allow
us to solve the model exactly for every value: oflevertheless, the toy model confronts us with the same
conceptual problems that exist in the linear pressure model and in NS: can a scale-invariant solution in
the inertial range with a cross over to a decaying solution at ¢dle consistent with the integral term?

If not, is there a saturation of the anisotropic exponents?

Eq. (99) can be rewritten in terms of a new projection operztarhich projects a vectaX®(r) on its

divergence-free part:

0,C* = —2[K"3,8,C"] + k0°C* + A",
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where
PX%(r) = X*(r) — & / dy G (r — )3, X"(y) .

We shall solve this integro-differential equation by first turning itinto a PDE using the Laplacian operator,
and then turning it into a set of decoupled ODEs usind30¢3) decomposition. As in the linear pressure
model, the non-locality of the projection operator can be removed by considering a differential version
of the operator:

O°PT*(r) = 0°T*(r) — 8"3, T"(r) .
In stationary conditio®, C* = 0, and therefore the differential form of the toy model is given by

2P[KM(r)0,0,C*(N] = 8K " (r)2,0,C*(r) — 09, K" ()9,0,C" (1)

ney
= k0%0%C*(r) + 02 A™(r)
0,C*(N =0. (100)

We have reached a linear PDE of order 4. This PDE will be solved by exploiting its symmetries, i.e.,
isotropy and parity conservation, as demonstrated in the next subsection.

Eqg. (100) and the incompressibility condition©%(r) are both isotropic and parity conserving. There-
fore, if we expand”*(r) in terms of spherical vectors with a definite behavior under rotations and under
reflections, we recover a set of decoupled ODE's for their coefficients.

For each sectafj, m), j > 0 of SQ(3) we have three spherical vectors:

B3 (@) = r I, (r)
B3, () = r /0", (r)
B3, (") = r 0,0, (1) .

Hered;,,(r) = ri Y;n(f), and seg27] for further details. The first two spherical vectors have a different
parity than the third vector, hence the equations for their coefficients are decoupled from the equation for
the third coefficient. In the following, we shall consider the equations for the first two coefficients only,

as they have a richer structure and larger resemblance to the linear pressure model. Finally, note that the
isotropic sector, i.e j =0, is identically zero. To see why, note that in this special sector there is only one
spherical vectorBf,,(f) = r~1r. Hence the isotropic part @®(r) is given byc(r)r~1r%, ¢(r) being

some scalar function af But then the incompressibility condition (99) implies tkét) ~ 2, which

has a UV divergence. We therefore conclude thiat = 0 and restrict the calculation o> 0.

By expandingC*(r) in terms of the spherical vectols ;,,,, B2;,», we obtain a set of ODEs (decoupled
inthe(j, m) labels) for the scalar functions that are the coefficients of these vectors in the expansion. The
equations for these coefficients can thus be written in terms of matrices and column vectors. To simplify
the calculations, we find the matrix forms of the Kraichnan operator and of the Laplacian of the projection
operator separately, and only then combine the two results to one.
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5.3.2. The matrix form of the operators and the solution of the toy model

In this subsection we derive the matrix form of the Kraichnan operator and of the Laplacian of the pro-
jection operator in eagrsector. To obtain the matrix of the Kraichnan operator in the baBisof, B2,
we expandC*(r),

CH1) = c1(r) B 1, () + c2(r) B, ()

in Appendix E we show how to find the operator 6f(r) in a matrix form which results in the final
equation fore1(r) andca(r):

@ R 2

I‘EM4 14 +r(71M3 13 +r€72M2 12
RC R @

2 2 2

(1
+r3My (C(ll)> +r Mo (Cl) = (Pl) : (101)
Cy €2 P2

In addition, the incompressibility constra@)iC*(r) =0 can also be expressed as a relation between
andcy(r):

c/1+2%+jc’2—j(j—1)%=o. (102)

This constraint has to be taken into account when solving Eq. (101). The solution of Eg. (101) is some-
what tricky due to the additional constraint (102). Seemingly, the two unknewins, c>(r) are over
determined by the three equations (101,102), yet this is not the case for the two equations (101) are
not independent. To see that this is the case and find the solution, it is advantageous to work in the
new basis

dy=c1+ jcp, do=—-2c1+ j(j—Dca.

In this basis the incompressibility constraint becomes very sinable: rd’;, allowing us to express,
and its derivatives in terms af;. To do that in the framework of the matrix notation, we define the
transformation matridu:

Uz(l J ) b1 1t (ﬂfﬂ)—v

-2 jG-D)° iG+1) 2 1)

SO that,(j;) =U (g;) The equations of; (r) are the same as the equationsdar), with the matrices
M; replaced byN; = UM; U™, and the sources; replaced by

(1) =2 ()

1) P2

Note that a divergence-free forcingf(r) will cause pj(r), p5(r) to be related to each other in the
same way thatly(r), d2(r) are related to each other, i.p35 = r(p})’. Next, we perform the following
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replacements:
do=rd{, a’ =rd?® +d®, dP =rd® + 24,
d¥ =rd® +34P, d¥ =rd® +44® .
We get an equation written entirely in terms of the functi@tr) and its derivatives
r(rVsdyY + Vad{® +r71vad® + r2vad? + r2vid + r~4Vody) = (Z%) , (103)

whereV; are two-dimensional vectors given by

0 1 0 1 0
V55N4(1), V4EN4(4>+N3(1>, V3EN3(3)+N2(1),

1 0 1 0 1
VZEN2(2>+N1<1>, VlzN]_(l)-i-No(l), VOEN0<O> .

Their explicit values can be found [82]. The Eq. (103) are for a column vector, and can be regarded
as two scalar differential equations that we refer to as the “upper” and the “lower”. The upper ODE is
of the fourth order, while the lower ODE is of fifth order. Unsurprisingly, the lower equation is the first
derivative of the upper equation, provided tht(r) is divergence free. Hence the two equations are
dependent, and we restrict the attention to the upper equation. To simplify it, we divide both sides by
Dr¢, replaced1(r) by y(r) and define the RHS to be the functisir):

S(r)= DY pi0r) . (104)

After doing so, we reach the following equation:

3 (2) D
wr az lﬁrz + ay w,,s + aor—lp4 =8() . (105)

Its homogeneous solution is easily found once we substifiit¢ = yor<. The scaling exponents are the
roots of the polynomial,

PO=E-DE-D(C - +azl(¢—D(E—2) +ak(—1) +arl+ao .

The polynomial roots are found to be real and non-degenerate. Two of them are positive while the other
two are negative. They are given by

&)= _% — %ei %\/A(j, e)x+B(j,e), i=12234, (106)
where

A, = +ej?+ej—2c+5+4j + 452
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Fig. 1. Scaling exponents of the first fgaras a function of. Top panels show: set 1 (left); set 2 (right). Bottom panel: set 3
(left); set 4 (right).

and

B(j,e) = —82j — 7e2j? + 1662 + 2623 + ¢2j% — 8¢j2 — 8¢j — 32 + 16+ 64 + 642 .
In the limite — 0O the roots become, in decreasing order:

GH=jj+1 ¢@=j-1 OB =—/, (il =—j—-2,

Fig. 1displays the first few exponents as a function.8/e note that the spectrum has no sign of saturation

asj increases. Before we discuss the meaning of this observation we will make sure that these solutions are
physically relevant and participate in the full (exact) solution including boundary conditions. The general
solution of Eq. (105) is traditionally given as the sum of a special solution of the non-homogeneous
equation plus a linear combination of the zero modes. However when attempting to match the solution
to the boundary conditions it is convenient to represent it as

4 310 r

rei i

ZZ dx x34D §(x) 107
v @) =& ... (&0 = &@B) Iy, e 0 (107)

i=1

all differentroots

where the free parameters of the solution are the four constantadeed a change im; is equivalent
to adding to the solution a term proportionalte”). In the next subsection, we find the valuesigfto
match the boundary conditions, and discuss the properties of the solution.
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5.3.3. Boundary conditions and inertial-range behavior
From Eq. (107) it is clear that the only valuesmof that guarantee that the solution remains finite as
r — 0 and that it decays as— oo aremy = mp = 400, m3 =my4 = 0:

W)= — - /oodx 3D gy
= &M —=&@NEMD —-EQNEM —<4) )y

o)

(@ = EMIE2) - E(3)(E2) — &5(4)

o
/ dx x3-4@5(x)

L) r
(é,-(3)—é,-(l))(éj(3)—cfj(2))(6,-(3)—6,-(4))/o e 0
rfj(4)

- (S —&MNE@B —E;@(E 4 —

rd 3=SMs(x) . 108
fj(3>>/o o 0 (108)

To understand the asymptotics of this solution we find from Eq. (104) that4dt, S(x) has a leading
term which goes likee/ ¢, whereas for > L, S(x) decays rapidly. It is now straightforward to prove
that forr <L, the¢; (3), ¢;(4) terms scale like/ 3¢, the¢, (2) term scales like*/® and the?; (1) term
scales like-~/V) for values ofe for which ¢;(1) < j + 3 — e and liker/+3~¢ otherwise. In addition, it is
easy to see that fer> L, y(r) exhibits an algebraic decay: the(1), ¢;(2) terms decay rapidly due to the

decay ofS(x) whereas th€ ;(3), £;(4) terms decay algebraically likei, respectively. The asymptotics
of the full solution are thus given by

réj(z), r<lL ,
v ~ {r’?i@, r>L . (109)

The obvious conclusion is that there is no saturation in the anisotropic scaling exponginisreases.

The lack of contradiction with the existence of an integral over all space has two aspects. The main one
is simple and obvious. The integro-differential (99) &t has a differential version (100). Solving the
differential version we are unaffected by any considerations of convergence of integrals and therefore the
solution may contain exponents that increase \yitlithout limit. Nevertheless, the full solution (108)
exhibits a cross over &t it increases in the inertial range< L and decays for > L. Thus plugging it

back to the integro-differential equation we are guaranteed that no divergence occurs.

The question why the cross-over lengtlloes not spoil the scale invariance in the inertial range still
remains. The answer is found in differential form of the equation of motion, given by Eq. (100). From
this equation we find that the integrand is a Green’s function times a Laplacian of a tensor. By definition
such an integral localizes, i.e. it is fully determined by the value of the tensor at the externalvéttor
the language of Eq. (92)(y) = V2B(y)!

The second and less obvious aspect is that the window of locality widens ujp Witls is due to the
cancellations in the angular integration of the anisotropic solutions that are due to the orthogonality of
theY;, (f) and their generalizationg, (7). To demonstrate this, consider again the simple integral (92)

and assume that (y) belongs to(j, m) sector, i.eC(y) = a(y)Y;(¥). Fory>r, we may expand the
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Green function in-/y:

1 1 & 2 vyl
Gr—y)y=———=—"-3 a <5> pM A
dnlr —yl - dny = y y

Herea, are Taylor coefficients. Obviously, the dangerous terms for the infrared convergence are those
with low values ofn. However, all these terms will vanish fer< j due to the angular integration against
Y;n(¥). The reason is that all these terms are of the fefhy"2(r - §)"3 with n3 < j. The angular part

here has projections only;,, with j’<k3 < j. The first term to contribute comes wher= j, and is
proportional to the amplitude integrﬁj>O dy yzajm(y)y*jfl. For a power law ,, (y) ~ y* this implies

locality for 4 < j — 2, instead ofl < — 2 in the isotropic sector. The lower bound of the window of locality

is also extended, and a similar analysis e¢r leads to/. > — j — 3. For the toy model this translates

to the window of locality

—Jj—e<i)<j+1l-—e.

From the previous analysis we find that the leading power law of the full solution in the inertial range
is 75/@  which is inside this “extended” window of locality. Nevertheless, the subleading poweét
originating from the first term in Eq. (108) is above this window, and its presence in the solution can be
explained only using the first mechanism.

We will see when we turn back to the linear pressure model that both these mechanisms operate there
as well, leading again to a lack of saturation in the exponents.

5.3.4. Solving the linear pressure model

We now return to the linear pressure model. The methods used to solve it follow very closely those
developed for the toy model and therefore will not be described in full detail. Contrary to the toy model
where we can have the full solution, in the present case we can solve only for the zero modes. These are
scale-invariant solutions that solve an equation containing an integral. Their exponent must therefore lie
within the “extended”j(dependent) window of locality. Finally, one can argue that these zero modes are
a part of the full solution that decays for- L, and therefore solve the original equation as well. We start
from Eqgs. (97) and (98). In the appendix[82] Eq. (98) was brought to the form

1. 1 12¢D
7%y = —=2 KM8 0.C*F () — = ———— f dy G (y)y<202C*(r —y) , 110
() =—5ZLK"0,0,C(N) — 5 T vy (r—y) (110)

which is true for every # 1. Thee = 1 case will not be treated here explicitly. Nevertheles$38j it
was argued that that the results ot 1 can be deduced from thke£ 1 results by continuity.

Looking at Eqg. (110), we note that whes: 2, the integral on the RHS of the above equation trivializes
to a local termC*(r). In this limiting case the model can be fully solved utilizing the same machinery
used in the previous section. The solution can then be used to check the zero modes computed below for
arbitrary values oé.

To proceed, we substitute Eq. (110) into Eq. (97), noting that the projegtdeaves the non-trivial
integral in (110) invariant since it is divergence-free in both indices. Sedtiag’(r,¢) = 0 in the
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stationary case, we arrive to following equation:
— [PrPLK"0,0,C7P(r)
12¢D
(€—3)(e—5)

As in the toy model, we apply two Laplacians to the above equation in order to get rid of the integrals of
the projection operators, and obtain

/ dy G(y)y=202C* (r —y) + 2k2?C* (r) + A% (r) . (111)

0= — d"[PrPLK"0,0,C°M)(r)
12¢D

T c=3)(—5 /dyG(y)y °CP(r —y) + 2k°C* (r) + 3% A™(r) . (112)

Here and in the sequel, the operatét should be interpreted a8%)". We now seek the homogeneous
stationary solutions of *#(r) in the inertial range (zero modes). These satisfy the equations obtained by
neglecting the dissipation, and setting the forcing and time derivative to zero:
0=0%k"2,0,C*(r) + 8"070,0,K"'9,0,C™ ()
— 0"0,0°K"0,0,C (r) — 0%, 62K’“6 3,C*(r)

12¢D —26 ~af
Sy 5)/dyG(y)y °C(r—y) . (113)

Let us now define the RHS of the above equation as the “zero-mode opefatprand write the zero-
mode equation compactly as

0=1[0(e)C*1(r) .

The solutions of this problem is obtained as before by expandifi¢r) in a basis that diagonalizése).

Full detail of this procedure are available[B2]. We turn now to discuss the results.Hig. 2we show
the leading scaling exponents of the linear pressure modgl$00, 2, 4, 6, 8, 10. FromFig. 2, we see
that in the isotropic sector and in the= 2 sector, the leading exponenté? = 0, corresponding to

the trivial C*#(r) = constsolution. These zero modes will not contribute to the second-order structure
function, which is given by

s (ry =21c*(r) — c*(0)] ,

and so we have to consider the zero mode with the consecutive exponent. In the isotropic sector, this
exponent is exactlyzéz) = 2 — ¢, as can be proven by passing to Fourier space. This special solution is
a finger-print of the existence of a constant energy flux in this model. Returning to the main question of

this subsection, we see that no saturation of the anisotropic exponents occurs since the leading exponen

in every j > 2 sector isi(.z) ~ j — 2. These exponents are within the window of locality of Eq. (111)

which is given by—j — 3 < gi ) < j — e. However, the next-to-leading exponents (which are the leading

ones in the structure function fgr= 0, 2), are already out of this window, and their relevance has to be
discussed. 11132] it was proposed that the same mechanism that works in the toy model also operates
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Fig. 2. Leading scaling exponents for the first fmnyThe dashed line indicates the upper bound of the window of locality.

here, and that all these higher exponents can be found in the full solution. To understand this, let us write
a model equation for the correlation function in the spirit of Eq. (92):

gC(r) + f dyK(r —y)C(y) = F(r) (114)

with K being some kernel, an@ being some local differential operator. In view of Eq. (111), the
differential operatorz should be regarded as the Kraichnan operator, and the integral term should be
taken for all integral terms in the equation, including integrals due to the projection operators. These
integrals create a window of locality that we denoteiRy, < 4 < Anj. Any pure scaling solutio' (r) ~

r* with /. outside the window of locality will diverge and hence will not solve the homogeneous part of
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EqQ. (114). Nevertheless, we will now demonstrate how this zero mode can be a part of a full solution
without breaking scale invariance. For this we act with a Laplacian on both sides of Eq. (114), in order
to get rid of the projection operators integrals. Of course, as in the linear pressure model, this will not
eliminate all integral terms, and thus we can write the resultant equation as

250 + / dy K (r — o?C(y) = 2F(r) . (115)

The main assumption, which was proven analytically in the simple case of the toy model, is that the above
equation has a solution which is finite for ajJland decays fars L. Let us now consider the zero modes

of Eg. (115); their exponents have to be within the “shifted” window of localigy, + 2 < 4 < Ani + 2.
Suppose now that* with inj < 4 < Ani + 2 is such a solution, which is therefore part of the full solution

of Eq. (115). We now claim that this solution also solves the original equation Eq. (114), hence allowing
the existence of scaling exponents outside of its window of locality. To see that, we first notice that since
the full solution decays fars L, then all integrals in Eq. (114) converge, and are therefore well defined.
All that is left to show is that the equation is indeed solvedlqy). But this is a trivial consequence of

the uniqueness of the solution for Laplace equation with zero at infinity boundary conditions. Indeed, if
we denote the integral term in Eq. (114) by

I(r) = / dyK(r—y)C(y) ,
then from Eq. (115) we have
Iy =d%[F(r) — 2C1)],

and since botli (r) andF (r) — 2C(r) decay as — oo, then they mustbe equal. Of course, no breaking of
scale invariance occurs because the equation is satisfiel(@ine gC(r)isasumofan inhomogeneous
solution and power laws.

Returning to the linear pressure model, we have shown that not only the first, leading exponents in every
sector are legitimate, but also the next few exponents. These exponents are inside the shifted window of
locality of the “Laplaced” equation (113), which is given byj + 1< /. < j 4+ 4 — e. At this point, we
may ask whether this is also the case for the other exponents, which are outside this shifted window of
locality. In light of the above discussion, it is clear that all of them may be part of the full solution, for
we can always differentiate Eqg. (111) sufficient number of times, thus shifting the window of locality
to include any of these exponents. However, this procedure is unnecessary once we have written the
prefactorA(Z; j, €) as an infinite sum of poles in In that case the equation is defined for all values of
except for a discrete set of poles, enabling us to look for exponents as high as we wish.

5.3.5. Summary and conclusions

The main question raised and answered in this subsection is whether the existence of the pressure term:
necessarily leads to a saturation of the scaling exponents associated with the anisotropic sectors. Sucl
terms involve integrals over all space, and seem to rule out the existence of an unbounded spectrum. We
have discussed a mechanism that allows an unbounded spectrum without spoiling the convergence of
the pressure integrals. The mechanism is demonstrated fully in the context of the simple toy model, and
it is proposed that it also operates in the case of the linear pressure model. The mechanism is based or
two fundamental observations. The first one is that the window of locality widens up lineajlgue



106 L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43—-164

to the angular integration. The second, and more important, is that a scaling solution with an unbounded
spectrum can exisis a part of a full solutionwhich decays at infinityindeed pure scaling solutions
cannot themselves solve the zero-mode equation if their scaling exponent is out of the window of locality.
However, the zero modes are always part of the full solution which decays to zere priceand we

have shown that if such a solution solves a differential version of the full equation, it must also solve the
original equation. Therefore by differentiating the full equation sufficiently many times, we can always
reach a differential equation with a window of locality as high as we wish. In that equation we can
find zero-mode solutions with arbitrarily high exponents (note that in the toy model, it was sufficient to
differentiate once to get rid of all integrals, thus obtaining an “infinitely wide” window of locality). But
since these zero modes are part of a full solution that decays at infinity, then this solution is also valid
for the original equation, hence showing that in the full solution there can be power laws with arbitrarily
high exponents. Finally, we want to comment about the relevance of these calculations to Navier—Stokes
turbulence. If we substitute blindke=4/3 in our results, we predict the exponents 2/3, 1.25226, 2.01922,
4.04843, 6.06860 and 8.08337 fpe=0, 2, 4, 6, 8 and 10, respectively. It would be tempting to propose

that similar numbers may be expected for Navier—Stokes flows with weak anisotropy, and indee@for

and 2 this is not too far from the truth. We return to this issue after analyzing the Navier—Stokes case in
next section. The closeness of the linear pressure Model to Navier—Stokes equations has also been use
in [135] to propose a closure scheme for the non-linear problem.

5.4. A closure calculation of anisotropic exponents for Navier—Stokes turbulence

In this subsection we start from the Navier—Stokes equations, and write down an approximate equation
satisfied by the second-order correlation function, in a closure approximation (renormalized perturbation
theory in 1-loop order)136,137] This equation is non-linear. For a weakly anisotropic system we follow
[137]in linearizing the equation, to define a linear operator over the space of the anisotropic components
of the second-order correlation function. The solution is then a combination of forced solutions and
“zero modes” which are eigenfunctions of eigenvalue zero of the linear operator.

5.4.1. Model equations for weak anisotropy in the closure approximation
It is customary to discuss the closure equationk, inrepresentation. The Fourier transform of the
velocity fieldu(r, ¢) is defined by

uk,t) = /dr exg—i(r-k)Ju(x, 1) .

The Navier—Stokes equations for an incompressible fluid then read

0 i
— k2 | utk, ) = =Pk /
[at-l-v }u( ) > (k)

d3qd3p i )
d(k+q+pu*(g,Hu*(p, 1) .
2m° (k+a+pu(a, Hu""(p, 1)

The interaction amplitude*?’ (k) is defined byr*#" (k) = —[ P* (k)k” + P*F(k)k"], with the transverse
projection operatoP*# defined asP*f = 5" — k*kP / k2. The statistical object that is the concern of this
subsection is the second-order (tensor) correlation funé&tiknr),

@03 FP Kk, 1ok — q) = Wk, Hu*(q, 1) .
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In stationary conditions this object is time independent. Our aim is to finddspendence, especially
in the anisotropic sectors.

It is well known that there is no closed-form theory for the second-order simultaneous correlation
function. We therefore need to resort to standard closure approximations that lead to model equations.
Such a closure leads to approximate equations of motion of the form

F*P(k A
20t
where
d3g d®
i = [ LS L sk p+aeka (117)
2n)

In this equationd™ (k, g, p) = 2[¥*(k, g, p) + ¥*(k, g, p)], and
vk, q.p) = Ok, . ) 7 (o) F77' () P k)
+ 17 @ F (@A 10 + 177 (0 F* (@A™ (p)] - (118)

In stationary conditions and férin the inertial range we need to solve the integral equatiétk) = 0.

The process leading to these equations is long; one starts with the Dyson—-Wyld perturbation theory, and
truncates (without justification) at the first-loop order. In addition, one asserts that the time dependence
of the response function and the correlation functions are the same. Finally, one assumes that the time
correlation functions decay in time in a prescribed manner. This is the origin of the “triad interaction
time” ©(k, g, p). If one assumes that all the correlation functions involved decay exponentially (i.e. like
exp(—yklt]), then

ok, g p=—-—"-——. (119)
Yk t 79+ 7p
For Gaussian decay, i.e. like éxp(y)?/2],
1

Ve + 78+ 73

All these approximations are uncontrolled. Nevertheless, this type of closure is known to give roughly
correct estimates of scaling exponents and even of coefficients in the isotropic sector.

Eq. (117) poses a non-linear integral equation which is closed gnsemodeled. One may use the
estimate), ~ kU whereUy is the typical velocity amplitude on the inverse scalé,afhich is evaluated

asU? ~ kB F* (k).

7= C, k2 Fo(k) (121)

In isotropic turbulence Egs. (117) and (121) have an exact solution with K41 scaling exponents,

BP0 = PPUOF (), Fk)=CePYB3, g = C, 333 (122)
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Note that the scaling exponentskfrepresentation, denoted &shave ad-dependent difference from
their numerical value in-representation. In three dimensidhd =@ + 3, and the exponent 2/3 turns to
11/3in Eqg. (122). For weak anisotropic turbulence Eqg. (117) will pdsear problem for the anisotropic
components which depends on this isotropic solution.

5.4.2. Closure with weak anisotropy
In weakly anisotropic turbulence one has to consider a small anisotropic corrgéfick) to the
fundamental isotropic background

F 0 = Eg (0 + £ () .

The firstterm vanishes with solution (122). Linearizing the integral equation with respect to the anisotropic
correction leads to

af dsq dgp aByd 78 afyd 28
o= | Ao kP QIS .09 7700 + 2774, p) £ (@)] =0

30" (k, 0, p)

so*P(k, g, p)
SF19 (k) '

3F(q)
We reiterate that the functional derivatives in Eq. (123) are calculated in the isotropic ensemble. In
computing these derivatives we should account also for the implicit depender@é.af, p) on the

correlation function through Eq. (121). We can rewrite Eq. (123) in a way that brings out explicitly the
linear integral operatat.,

P10k, g, p) = . Tk, q,p) = (123)

. d3g
Lif) = 10k, q) f7° 124
) /(2 B kA = (124)

where the kernel of the operator is
K, ¢) = bk — g / LD g3, p, —k — p) + 2Tk, G, -k — q) . (125)

5.4.3. Symmetry properties of the linear operator

The first observation to make is that the linear operator is invariant under all rotations. Accordingly,
we can block diagonalize it by expanding the anisotropic perturbation in the irreducible representations
of the SQ(3) symmetry group. These have principal indigesith an integerj going from 0 toco. The
zeroth component is the isotropic sector. Correspondingly, the integral equation takes the form

10 =1+ 1k =0. (126)
j:1

The block diagonalization implies that eagtblock provides an independent set of equations (for every
value ofk): I?‘ﬁ(k) = 0. The first term of (126) vanishes with solution (122). For all higher values of



L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43-164 109

we need to solve the corresponding equation
Lif;)=0. (127)

We can block diagonalize further by exploiting additional symmetries of the linear operator. In all dis-
cussion we assume that the turbulent flow has zero helicity. Correspondingly, all the correlation functions
are invariant under the inversion kfConsequently, there are no og@omponents, and we can write

M= K.

j=2.4,...

We also note that in general{—k) = u*(k). Accordingly, the correlation functions are real. From this

fact and the definition it follows that the correlation functions are symmetric to index permutation,
EP a0 = B (k) and fj‘."ﬁ(k) = ff“(k). As a result the linear operator is invariant to permuting the
first (x, B) and separately the second §) pairs of indices. In addition, the operator is symmetric to

k — —k together withq — —q. This follows from the inversion symmetry and from the appearance of
products of two interaction amplitudes (which are antisymmetric under the inversion of all wavevectors
by themselves). Finally, the kernel is a homogeneous function of the wavevectors, meaning that in every
block we can expand in terms of basis functions that have a definite scaling behavior, being proportional
tok—".

5.4.4. SO(3) decomposition A
As a result of the symmetry properties the operdtas block diagonalized by tensors that have the
following properties:

They belong to a definite sectof, m) of the SQ(3) group.

They have a definite scaling behavior.

They are either symmetric or antisymmetric under permutations of indices.
They are either even or odd kn

We have already explicitly presented the tensors involved for the case of passive vector advection. Here
we only quote the final results translated iktspace. In every sect@y, m) of the rotation group with

j>1, one can find 9 independent tensar¥ (k) that scale likek=*. They are given byt N;‘fi.m(IA(),
where the indey runs from 1 to 9, enumerating the different spherical tensors. The unit Veetd/ k.
These nine tensors can be further subdivided into four subsets exactly like the real-space decomposition

of Section 4.2.2.2:

Subset of 4 symmetric tensors with—)/ parity.
Subsetl of 2 symmetric tensors witli—)/** parity.
Subsetll of 2 antisymmetric tensors with—)/*1 parity.
SubsetV of 1 antisymmetric tensor witli—)/ parity.

Due to the diagonalization df by these subsets, the equation for the zero modes foliates, and we can
compute the zero modes in each subset separately. In this subsection, we choose to focus on subset |
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which has the richest structure. The four tensors in this subset are given here by

l]m(k) j_zkakﬁqum(k) )
J,n<k> kI kP + k"1, (K)
im0 =k,
4]m<k) k250l g, () (128)

where¢ ;,, (k) are the standard spherical harmonics.
The last property to employ is the incompressibility of the target funcfithik). Examining basis

(128) we note that we can find two linear combinations that are transveraadidwo linear combinations
that are longitudinal itk. We need only the former, which have the form

B} ]m<k) kT PP, (K)

By (k) = kI [k?0%0" — (j — DK + k*0F) + j (j — Do 1p 1, (K) . (129)
Using this basis we can now expand the target function as

=(2)

0=k [eB, 0+ e2BY, (0] (130)
5.4.5. Calculation of the scaling exponents

Substituting Eq. (130) into Eq. (127) we find

22
Lq é] |Bl jm)cl + Lq “J |B2 jm>c2 =0. (131)

Projecting this equation on the two function of basis (129) we obtain for the matyik;, 55.2)) =

~ (2
(Bi,jmlLg ™" |By jm) the form

@ d3g uf o —EP
Lii(j, ()= dkB (k)27 (k, g)g % By (132)

(27‘5) i,jm ljm(q) :
Here we have full integration with respect ¢o but only angular integration with respect ko Thus
the matrix depends oh as a power, but we are not interested in this dependence since we demand the
solvability condition

detL; (j, 1) = (133)

It is important to stress that despite the explicitlependence of the basis functions, the matrix obtained
in this way has n@: dependence. In the calculation below we can therefore put, without loss of generality,
m = 0. This is like having cylindrical symmetry with a symmetry axis in the direction of the unit vector
f. In this case we can write the matnﬁbg,j(lz) (in the vector space, f=x, y,z) as

B = kT, (T Pk ) (134)
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Fig. 3. Determinant and zero crossing for the seg¢tef. The scaling exponent computed from the zero crossi@fé)isc 0.667.

whereé’ﬁ‘z/j’k are matrix operators, acting on wave vedtor
~af o KKP
%l,j,k = 50/} - k2 y
272 o B
~ o k<0 _ k*o kP04
By iy=———— (=1 =+ — —js*] , 135
2k = Jpaggp ~ WD (akﬁ tom (135)

andP; (x) denotejth-order Legendre polynomials. The technical details of the calculations were presented
in [137]. Here we present and discuss the results.

5.4.6. Results and concluding remarks

The determinants dgt; ;(;, Zi-z)] were computed as functions of the scaling exponéﬁ{sin every
j-sector separately, and the scaling exponent was determined from the zero crossing. The procedure is
exemplified inFig. 3for the isotropic sectof = 0. We expect for this sectd}éz) =11/3, in accordance
with Céz) = 2/3. Indeed, for both decay models, i.e. the exponential decay (119), shown in dark line,
and the Gaussian decay (120) shown in light line, the zero crossing occurs at the same point, which in
the inset can be read as 3.6667. For the highsectors the agreement between the exponential and
Gaussian models is not as perfect, indicating that the procedure is not exka. hwe present the
determinant and zero crossings foe 2. From the inset we can read the exponéﬁf& 4.351 and 4.366

for the exponential and Gaussian models, respectively. This is in corresponden(}@w&tl‘iSSl and
1.366, respectively. These numbers are in excellent correspondence with the experimental measurement:
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reported in[13,33], cf. the next section. The results fgr= 4 are presented iRrig. 5 Here the zero
crossing, as seen in the inset, yields very close resultéﬁ)obetween the exponential and Gaussian

. =2 . . . .
decay models, |.e“;§1 ) ~ 4.99. Note that this result is very close to the boundary of locality as discussed
in [137]. Nevertheless, the zero crossing is still easily resolved by the numerics, with the prediction that
cf) ~ 1.99. The simulation estimate of this numbeif4®] was 17 £ 0.1. We note that while the result
Cf) ~ 1.99 is not within the error bars of the simulational estimate, it is very possible that the closeness of
the exponent to the boundary of the window of locality gives rise to very slow convergence to asymptotic
scaling. We therefore have to reserve judgment about the agreement with simulations until larger scaling
ranges were available.

Similar results are obtained fgr= 6, seeFig. 6. Also this case exhibits zero crossing close to the
boundary of locality, withféz) ~ 6.98. Again we find close correspondence between the exponential
and Gaussian models. In terms@f this meansjéz) ~ 3.98. This number appears higher than the
simulational result fronj40], which estimatectéz) ~ 3.3 £ 0.3. We note however that fof = 6 the
log—log plots measured in DNJ80] possess a short scaling range.

Interestingly enough, the set of exponeﬁfs‘. =2/3, 1.36, 1.99 and 3.98 fgf = 0, 2, 4 and 6, re-

spectively, are in close agreement with the numbers obtained for the linear pressureérﬁbdez/?),
1.25226, 2.01922, 4.04843, fgr= 0, 2, 4 and 6, respectively. We reiterate at this point that the latter

set is exact for the linear pressure model, whereas the former set is obtained within the closure approx-
imation. In fact, the close correspondence is not so surprising since the linearization of Navier—Stokes
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equations for small anisotropy results in a linear operator which is very close to the one that exists
naturally in the linear pressure model. Numerical reqil840,138]Jobtained at moderateeand with
strong anisotropies show a small disagreement with the numbers calculated in the closure approximation.
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We do not expect a much more precise theoretical evaluation of these exponents before numerical and
experimental data at highéte are obtained and the intermittency problem in the isotropic sector is
fully settled.

6. Analysis of experimental data

The major difficulty in applying the&sQ(3) decomposition to experimental data lies in the fact that
one never has the whole fieldx). We thus cannot project the statistical objects onto chosen basis
functionsB,,, and simply integrate out all other contributions. Rather, we need to extract the desired
information laboriously by fitting partially resolved data, or to measure quantities that do not have pro-
jections on the isotropic sector, to see right away the anisotropic contributions. We begin with the first
approach.

6.1. Anisotropic contribution to the statistics of the atmospheric boundary layer

The atmospheric boundary layer offers a natural laboratory of turbulence that is unique in offering
extremely highRenumbers. Students of turbulence interested in the scaling properties that are expected
to be universal in the limiRe — oo are thus attracted to atmospheric measurements. On the other
hand, the boundary layer suffers from strong inhomogeneity (explicit dependence of the mean velocity
on the height) which leads to strong anisotropies such that the vertical and the horizontal directions are
quite distinguishable. In addition, one may expect the boundary layer to exhibit large-scale quasi two-
dimensional eddys whose typical decay times and statistics may differ significantly from the generic three-
dimensional case. The aim of this section is to review systematic methods of data analysis that attempt
to resolve such difficulties, leading to a useful extraction of the universal, three-dimensional aspects of
turbulence.

Obviously, to isolate tensorial components belonging to other than isotropic sectors one needs to collect
data from more than one vector component of the velocity field. Hawogrobes is actually sufficient
to read surprisingly rich information about anisotropic turbulence. In the experiments discussed in this
subsection two types of geometry were employed, one consisting of two probes at the same height above
the ground and the other with the two probes separated vertically. In both cases the inter-probe separation
is orthogonal to the mean wind.

6.1.1. Experiments, data sets and the extraction of structure functions

The results presented in this subsection are based on two experimental[$6i{LB33] which are
denoted throughout as | and I, respectively. In both setups the data were acquired over the salt flats in
Utah with a long fetch. In set | the data were acquired simultaneously from two single hot wire probes
at a height 66 m above the ground, with a horizontal separation of 55 cm, nominally orthogonal to
the mean wind. The Taylor microscale Reynolds number was about 10,000. Set Il was acquired from
an array of three cross-wires, arrangdmbveeach other at heights 11, 27 and 54 cm respectively. The
Taylor microscale Reynolds numbers in this set were 900, 1400 and 2100, respetaibtilists a few
relevant facts about the data records analyzed here. The various symbols have the following meanings:
U is the local mean velocity,’ the root-mean-square velocigthe energy dissipation rate obtained by



L. Biferale, I. Procaccia / Physics Reports 414 (2005) 43-164 115

Table 1
Data sets | (first line) and 1l (second-fourth lines)

Height(m) U (ms 1) « (ms 1 10%@E) m2s3) yn(mm) i(cm) R, fs, per channel, Hz  No. of samples
6 4.1 1.08 1.1 0.75 15 10,500 10,000 x4.07
0.11 2.7 0.47 6.6 0.47 2.8 900 5000 x8L0°
0.27 3.1 0.48 2.8 0.6 4.4 1400 5000 x8L0°
0.54 3.51 0.5 1.5 0.7 6.2 2100 5000 x8L0°

the assumption of local isotropy and Taylor's hypothesend/ are the Kolmogorov and Taylor length
scales, respectively, the microscale Reynolds numthet u'//v, and f; is the sampling frequency.

For set | it is important to test whether the separation between the two probes is indeed orthogonal to
the mean wind. (We do not need to worry about this point in set Il, since the probes are above each other.)
To do so one computes the cross-correlation functiQiic + t)u2(¢)). Here,u1 andu, refer to velocity
fluctuations in the direction of the mean wind, for probes 1 and 2, respectively. If the separation were
precisely orthogonal to the mean wind, this quantity should be maximum=£dd. Instead, for set |, it
was found that the maximum shifted slightlyte-0.022 s, implying that the separation was not precisely
orthogonal to the mean wind. To correct for this effect, the data from the second probe were time-shifted
by 0.022 s. This amounts to a change in the actual value of the orthogonal distance. The effective distance
is 4 ~ b4 cm (instead of the 55 cm that was set physically). The coordinates were chosen such that the
mean wind direction is along the 3-axis, the vertical is along the 1-axis and the third direction orthogonal
to these is the 2-axis. We denote these directions by the three unit vectarandp, respectively. The
raw data available from set | is® (r) measured at the positions of the two probes. In set Il each probe
reads a linear combination of? (r) andu® () from which each component is extractable. From these
raw data we would like to compute the scale-dependent structure functions, using the Taylor hypothesis
to surrogate space for time. This needs a careful discussion.

6.1.2. Theoretical constructs: the Taylor hypothesis, inner and outer scales

Decades of research on the statistical aspects of thermodynamic turbulence are based on the Taylol
hypothesig107], which asserts that the fluctuating velocity field measured by a given probe as a function
of time, u(¢) is the same as the velocityr/U) whereU is the mean velocity andis the distance to a
position “upstream” where the velocity is measuredeld. The natural limitation on the Taylor hypothesis
is provided by the typical decay time of fluctuations of scal®Vithin a K41 scaling theory, this time
scale is the turn-over time//S(r) whereS(r) = S*™(r). With this estimate, the Taylor hypothesis is
expected to be valid wheyS(r)/U — 0. SinceS(r) — 0 whenr — 0, the Taylor hypothesis becomes
exact in this limit. We will use this to calibrate the units when we employ two different probes and read
a distance from a combination of space and time intervals.

The Taylor hypothesis has also been employed when the mean velocity vanishes, and instead of
one uses the root-mean-squafeRef.[139] has presented a detailed analysis of the consequences of the
Taylor hypothesis on the basis of an exactly soluble model. In particular, ways were proposed there to
minimize the systematic errors introduced by the use of the Taylor hypothesis. In light of that analysis
we will use here an “effective” wind/ef which for surrogating the time data of a single probe is made
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of a combination of the mean wirid and the root-mean-squawg

Ustt = U~ + (bu')? (136)

whereb is a dimensionless parameter. Evidently, when we employ the Taylor hypothesis in log—log
plots of structure functions using time series measuredsimgle probe, the value of the paramefer

is irrelevant, changing just the (arbitrary) units of length (i.e. the arbitrary intercept). When we used
data collected from two probes, we mix measured distance and surrogated distance, and the paramete
b becomes a unit fixer. The numerical value of this parameter is foufiBB] by the requirement that

the surrogated and directly measured structure functions coincide in the limit0. When we do not

have the necessary data we will use values sfiggested by the exactly soluble model treatgd 29].

The choice of these values can be justified a posteriori by the quality of the fit of to the predicted scaling
functions.

When we have two probes placed at different heights the mean velocity’ @sdmeasured by each
probe do not coincide. In applying the Taylor hypothesis one needs to decide which valyeisimost
appropriate. This question has been addressed in detail irffI38f. with the final conclusion that the
choice depends on the velocity profile between the probe. In the cdiseaf shear the answer is the
precise average between the two probes,

U + oo w2+ u?

Ut =\ 22 4 p1 71 (137)
2 2

where the subscripts 1, 2 refer to the two probes, respectively. In all the subsequent expressions we will

therefore denote separations/hyand invariably this will mean Taylor-surrogated time differences. The

effective velocity will be (136) or (137) depending on having probes at the same height or at different

heights. The value df will be b = 3 following Ref.[139]. It can be shown that the computed scaling

exponents are not sensitive to the chandin(rhey change by a couple of percents upon changiog

30%.) In seeking scaling behavior one needs to find the inner and outer scales. Below the inner scale all

structure functions have an analytic dependence on the separ&iiony 2, and above the outer scale

the structure functions should tend to a constant value. We look at the longitudinal structure functions

30 = (@3 + 1) — ud(x))?)

computed from a single probe in set | and from the probe at 0.54 m in set Hijgeé We simultaneously
consider the transverse structure function

Sy = (e + 1) — ut(x))?)

computed fromthe probe at0.54 min set |, Bag 8 The spatial scales are computed using the local mean
wind in both cases since the scaling exponent for the single-probe structure function are not expected to
be affected by the choice of convection velocity. This choice does determine the valoerodsponding

to a particular time scale however. One may expect that any correction to the numerical vakisroéll

for a different choice of convection velocity and not crucial for the qualitative statements that follow.

In Fig. 7 we clearly see the? behavior characterizing the transition from the dissipative to the inertial
range. As is usual, this behavior persists about a half-decade above the “nominal” Kolmogorov length
scalen. There is a region of cross-over and then the isotropic scafin§ 8 expected for small scales
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Fig. 8. Raw log—log plot of the transverse component of the second-order structure function.

in the inertial range begins. We thus have no difficulty at all in identifying the inner scale, it is simply
revealed as a natural crossover length in this highly resolved data. We understand by now that we cannot
expect to be able to fit with this single exponent for larger scales and must include scaling contributions
due to anisotropy. We expect that the contributions due to anisotropy will account for scaling behavior
up to the outer scale of a three-dimensional flow patterns. The question therefore is how to identify what
this large scale is. One approach would be to simply use the scale where the structure function tends to
a constant, which corresponds to the scale across which the velocity signal has decorrelated. It becomes
immediately apparent that this is not a reasonable estimate of the relevant larg&igcalshows that

the structure function stays correlated up to scales that are at least an order of magnitude larger than
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the height at which the measurement is made. On the other hand, if we look at the transverse structure
function computed from the probe at 0.54FRig. 8 we see that it ceases to exhibit scaling behavior at

a scale that is of the order of the height of the probe. It appears that we are observing extremely flat
eddys that are correlated over very long distances in the horizontal direction but have a comparatively
small correlation lengths in the direction perpendicular to the boundary. Since we know that the presence
of the boundary must limit the size of the largest three-dimensional structures, the height of the probe
should be something of an upper bound on the largest three-dimensional flow patterns that we can detect
in experiments. Thus we arrive at a qualitative understanding of the kind of flow that is observed in these
atmospheric measurements. The size of the largest three-dimensional structures is determined by the
decorrelation length of the transverse structure function. This is because the transverse components of the
velocity are unaffected by the extended, persistent, two-dimensional eddys that govern the behavior of
the longitudinal components. The theory of scaling behavior in three-dimensional turbulence can usefully
be applied to only those flow patterns that are truly three-dimensional. The extended flat eddys must be
described in terms of a separate theory, including maybe notions of two-dimensional turbulence which has
very different scaling propertig440]. Such considerations are outside the scope of this review. Rather,

in the following analysis, the outer-scale was chosen to be of the order of the decorrelation length of the
transversestructure function (where available) or of the height of the probe. We will see below that up

to a factor of 2 these are the same; takingp be as twice the height of the probe is consistent with all
data. We use this estimate in the study of both transverse and longitudinal objects.

6.1.3. Extracting the universal exponents of higher j sectors
We consider the second-order structure function

Sy = (WX + 1) — ) WP x + 1) — uP (%)) . (138)

The lowest-order anisotropic contribution to the symmetric (in indices), even paritydie to homo-
geneity), second-order structure function is fhe 2 component of th&Q(3) symmetry group. Ref33]
presents a derivation of the = 0 axisymmetric (invariant under rotation about the 3-axis) part of the
j = 2 contribution to this structure function in homogeneous turbulence. The derivation of thie=fall
contribution to the symmetric, even parity structure function appears in AppendiigC shows the

fit to the structure function computed from a single probe in set |

§80,0=0) = (WP +r) —uPx))?) (139)

where the subscript 1 denotes one of the two probes, with jugttitiecontribution. The best-fit exponent
fortherange < r/4 <4.5is (62) =0.684 0.01 (Fig.9a). Above this range, was impossible to obtain a
good fit to the data with just the isotropic exponent &igl 9% shows the peel-off from isotropic behavior
abover/4 = 4.

To find thej = 2 anisotropic exponent one needs to use data taken from the two probes. To clarify the
procedure we show in Fid.0the geometry of set |. What was computed is actually

S, 0) = ([ul> (et + Uettty) — us (Uestt)1?) .
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Fig. 9. The single-probe structure function computed from data set I. (a) show? thi@imization by the best-fit value of the
exponent in the isotropic sectb&Z) ~ 0.68 for the single-probe structure function in the range/) 4 < 4.5. (b) shows the fit

using the best value ¢ 2 obtained in (a), indicating the peel-off from isotropic behavior at the end of the fitted range.
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Fig. 10. Diagrammatic illustration of the experimental set-up. Shown is the positioning of the probes with respect to the mean
wind and how the Taylor hypothesis is employed.

Here0 = arctan(4/ Uest;), t; = 7/ Ueff, andr = / 4% + (Usttt7)?. Ust Was as in Eq. (136) with = 3.
We will refer from now on to such quantities as

5320, 0) = (WP x + 1) — u )2 . (140)

Next, one may fix the scaling exponent of the isotropic sector.68 &nd find thej = 2 anisotropic
exponent that results from fitting to the full= 2 tensor contribution. Finally, one needs to fit the objects

in Egs. (139) and (140) to the sum of thie= 0 (with scaling exponena‘,éz) = 0.68) and thej = 2
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Fig. 11. They? minimization by the best-fit value of the exponent in the 2 anisotropic sector from the fit to both the= 0
and thef-dependent structure function in the range ©/4 < 25.

contributions (see Appendix C)

s, 0) = sB(r, 9) + 58,00 = co(;) 2+ (@ — (@ cod)
ta ( ) (g(z) +2)2 — (23?2 +2)cofo + 202 (2 - 2) codiig]
+ b( ) [(“<2) +2)((2 +3) - (P3P + 4yco + 22 + 1) (P — 2) codo]
+ ag,z,l(:‘) a2 [—202 ({2 + 2) sinfcost + 2:2 (2 — 2) co0sing)
taga 2<A> [ 202 (@ _ 2) o sin?o)

#(2)
r\¢ .
+azz(4)” -2 - D sinfo) (141)

The above fit was performed using valueiﬁ‘ ranging from 05 to 3. The best value of this exponentis

the one that minimizes thé for the fits. From Figl1one may read the best value to b8&+0.15. The fits

with this choice of exponent are displayedHig. 12 The corresponding values of the 5 fitted coefficients
can be found in the pap3]. The range of scales that are fitted to this expression<is/U < 25. We

thus conclude that the structure function which is symmetni@ixhibits scaling behavior over the whole
scaling range, but this important fact is missed if one does not consider a superpositionefQfand 2
contributions. Finally, let us note that the value of the exponent is perfectly in agreement with the analysis
of numerical simulationf38], in which one can comfortably integrate the structure function against the
basis functions, eliminating all contributions excgpt 2 (see next section).
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6.1.4. Extracting thg = 1 component

In homogeneous flows, it follows from symmetry and parity that the often computed and widely
analyzed structure function as defined in Eq. (138) does not possess any contribution froe the
sector. The lowest-order anisotropic contribution belongs tojtee2 sector. In order to isolate the
scaling behavior of th¢ =1 contribution in atmospheric shear flows we must either explicitly construct a
new tensor object which will allow for such a contribution, or see if it can be extracted from the structure
function itself computed in the caseiohomogeneityWe have pursued both avenues. In the former, we
construct the tensor

TP (r) = W (x + 1) — u®(x)) @’ (x + 1) + 1’ (x))) . (142)

It is easily seen that the function vanishes both in the case-off and whernr is in the direction of
homogeneity. From data set Il we can calculate this function for non-homogeneous (in the shear direction)
scale-separations. In general, this will exhibit mixed parity and symmetry and therefore, to minimize as
far as possible the final number of fitting parameters we look at only the antisymmetric contribution. We
derive the tensor contributions in thie= 1 sector for the antisymmetric case in Appendix D and use this

to fit for the unknownj = 1 exponent. Below we describe the results of this analysis. Next, we computed
the#-dependent structure function from set Il. We expect that this could exhibjtth& component, as
inhomogeneity does not allow us to apply incompressibility in the different symmetry and parity sectors
to eliminate this contribution as in the case of the homogeneous structure function. This structure function
is symmetric but of mixed parity. We derive the tensor contributions iry ted. sector for the symmetric

case in Appendix D and use this to fit for thie= 1 exponent.

6.1.5. Antisymmetric contribution
We consider the tensor object in Eq. (142). In order to have as few parameters as possible in the fitting
procedure, we take the antisymmetric part

T () — TP (r)
=

which will only have contributions from the antisymmetric= 1 basis tensors. An additional useful
property of this object is that it does not have any contribution from the isotropic helicity/fre®

T (r) = W ulx + 1)) — WP Qu*(x + 1))
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Fig. 13. Right: they2 minimization by the best-fit value of the exponé{ﬁ) of the j = 1 anisotropic sector from the fit to

0-dependent 31(r, 0) function in the range & r/4 < 2.2. Left: the fitted7 31(r, 0) function. The dots indicate the data and the
line is the fit.

sector due to its antisymmetry. This allows us to isolatejteel contribution and determine its scaling

exponent(lz) starting from the smallest scales available. Using data from the probes at 0.27 m (probe 1)
and at 0.11 m (probe 2) we calculate

731y = WS 00ulP x+ 1)) — @ x4+ nus? 0)

where again superscripts denote the velocity component and subscripts denote the probe at which this
component is measured. We want to fit this object to the tensor form derived in Appendix D, namely

~31 . . C(Z) . C(Z) ‘:(2)
T°%(r, 0,9 =0)=—az10r*t SiNO+ap11rl +azi_1r'l COSOH.

Fig. 13gives they? minimization of the fit as a function 011(12) and we use the best value oft10.15

for the final fit. This is shown in the left panel. The fithig. 13peels off at the end of the fitted range.

The maximum range over which one can fit is of the order of the height of the probes and again, this is
consistent with the considerations presented above.

6.1.6. Symmetric contribution

Finally, we compute the structure function Eqg. (140) where the subscripts denote probe 1 at 0.27m
and probe 2 at 0.11 cm. As discussed in Appendix D, since the scale separation has an inhomogeneour
component, we expect a contribution from the 1 anisotropic sector and we would like to extract what
the scaling exponent in this sector is. Note thatike0 sector contributesvoindependent tensor forms
with coefficients we will denote by, andcz, since incompressibility does not provide a constraint to
relate them. This fact combined with Eq. (D.8) gives us the tensor form to which we must fit our function

33 é«(Z) C(Z) Ly(z) .2
§7(r, 0) = cr0 +carto CO§9+G1,1,OV“1 cosl + az,1,0r*t 2cosl
«(2) .(2) . .2
+ ag 1,071 cos0 + ag1,1r°l (—2cosdsind) +aj 1 —1r°t sind
@ )
+ag1._1r1 cogOsing . (143)

We fix the exponerﬂgz) to be 068 and perform fits with varying values 6112) for 8 unknown coefficients.
The best value 04‘(12) is obtained for the range©r/4 < 4.2 and is 105+ 0.15 as is shown ifrig. 14
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Fig. 14. Right: they2 minimization by the best-fit value of the exponé{ﬁ) of the j = 1 anisotropic sector from the fit to
0-dependent inhomogeneous structure function in the rarge/@ < 2.2. Left: the fit to the inhomogeneous structure function
computed as in Eq. (143). The dots indicate the data and the line is the fit.

In the left panel we show the fit to the data using this value of the exponent. The fit peels off at the end
of the fitted range at the scale on the order of twice the height of the probe, consistent with the earlier
discussion. There does not exist a weII-defiﬂl@bas given by the standagd minimization procedure

for ranges smaller or larger than that fitted foiFig. 14 The quality of the fit is good although, as was
expected from the large number of parameters in the fitting function Eq. (148} a function of the

C(lz) is not as smooth as for all previous fits and its minimum is a relatively weak one.

6.1.7. Summary and conclusions
In summary, we considered the second-order tensor structure functions of velocity differences in the
atmospheric boundary layers. The following conclusions appear important:

(1) The atmospheric boundary layer exhibits three-dimensional statistical turbulence intermingled with
flow patterns whose statistics are quite different. The latter are eddys with quasi-two-dimensional
nature, correlated for hundreds of meters, having little to do with the three-dimensional fluctuations
discussed above.

(2) We found that the “outer scale of turbulence” as measured by the three-dimensional statistics is of
the order of twice the height of the probe.

(3) The inner scale is the usual dissipative crossover, which is clearly seen as the scale connecting two
different slopes in log—log plots.

(4) Between the inner and the outer scales the sum of the components up2appears to offer an
excellent representation of the structure function.

(5) The scaling exponentéz) are measured as@B8+ 0.01, 1+ 0.15 138+ 0.10 forj =0, 1, 2,
respectively.

We note that as far as the low-ordesectors are concerned, the picture that emerges for Navier—Stokes
turbulence is not different from the linear advection problems that were treated in the previous section. If
the trends seen here continue for higjealues, we can rationalize the apparent tendency toward isotropy
with decreasing scales. If indeed every anisotropic contribution introduced by the large-scale forcing

.(2)
(or boundary conditions) decays@gL)*/ with increasingﬁ.z) as a function ofj, then obviously when
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r/L — 0 only the isotropic contribution survives. This is a pleasing notion that justifies the modeling of
turbulence as isotropic at the small scales.

6.2. Homogeneous shear

In this subsection we discuss recent experiments in which anisotropy is created without inhomogeneity
[7,34,35] such experiments are particularly appealing for our purpés@siogeneoushear flow can be
realized in a wind tunnel by using a variable solidity screen followed by flow straighteners. Such a set-up
results in a shear flow that remains approximately constant for the length of the tunnel. To produce high
Reynolds numbers one places an active grid before the shear generatinggciedhis wayRe, can be
as high as 1000. To assess directly the effects of anisotropy it is useful to measure statistical objects that
vanish identically in the isotropic sector. A possible choice is the set of skewness and hyper-skewness
[14,42,141ps explained in Section 2.5. Other purely anisotropic inertial range observables can be defined
by mixing longitudinal and transversal increments with an odd number of transversal components:

sP20HD) (1) = (ou? (NouZT(r)) . (144)

Systematic measurements of these anisotropic mixed correlation functions was rep@t84t35]

From the experimental data it is not possible to disentangle exactly different anisotropic projections in
different sectors. This is becauS€X3) projection requires the knowledge of the whole velocity field in

a 3d sub-volume, something clearly out of reach in any experimental apparatus. The simplest working
hypotheses one can make is that, due to the hierarchical organization of anisotropic scaling exponents, the
statistical behavior of quantities as (144) is dominated, at scales small enough, by the Jeadisgctor.

In other words, the experimental measurements of the scaling properties of (144) is the best estimate of
the exponer!;;":p”qﬂ). In [34,35]the plots of purely anisotropic quantities like (144) up to ovger8

with n = p + 2¢ + 1 were shown. The data clearly show that these purely anisotropic structure functions
have quite good power-law behavior with exponents that are sub-leading with respect to the exponents
of the isotropic structure functions of the same ordeFor examples™-3 () ~ r1-56 while the fourth-

order longitudinal structure function in isotropic ensembles is known to scalé85r) ~ r1-27. Similar
gualitative and quantitative results were obtained by analyzing data from an atmospheric boundary layer
in [10] and in the boundary layer close to a wgl7]. In the latter two works, a phenomenological
fitting procedure to the large-scale behavior allowed the authors to find a power law for the anisotropic
structure functions which pertain to a much larger range of scales. We draw the reader’s attention to the
discrepancy in the best fit for the scaling exponents found§fe? () ands@? (r) in [34,35] Similar
discrepancies are also reported for higher-order structure functions. In our view, this cannot be taken
as evidence that there isg@dependence of the scaling exponents of $&3) projections. First, the
anisotropic exponents are relatively inaccurate due to statistical errors; the amplitudes of the anisotropic
fluctuations are relatively small. Second, as already noted, the experimental data cannot disentangle
exactly the contribution of th¢ = 2 sector. Therefore, it may well be that contributions from the 4

(and higher) sectors affect differently the correlation functions with different tensorial structure. Similarly,
other experimental investigation focused on 8@&3) decompositioj36,142,143]have found results
depending on the geometric set-up of the analyzing probes. The experimental analysis of anisotropic
turbulence via thesQ(3) decomposition is in its infancy; more refined experimental techniques are
needed before a firm conclusion can be reached on these issues.
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6.2.1. Explanation of persistence of anisotropies

As discussed in Section 2.5 there is numerical and experimental evidence for the persistence of small-
scale anisotropic fluctuations in various instanfg0,24,39,6Q] The issue has many important con-
sequences. We would like to refer to the violation of teeirn-to-isotropyin different meaning$39].
A strongviolation would be implied if the following set of inequalities between different anisotropic
exponents of the same correlation function were broken:

<) <<l (145)

i.e.ifone, ormore, anisotropic sector becomes leading with respectto the isotropic one. This would destroy
the phenomenology of turbulence as developed since Kolmogorov’s theory in 1941. Turbulence would
become more and more anisotropic at smaller and smaller scales. As a result, strong non-universalities
in small-scales statistics would show up depending on which anisotropic sector is switched on/off by
the large-scale forcing. Atrongviolation of thereturn-to-isotropypostulate has never been observed

in Navier—Stokes turbulence. On the other hand, when the hierarchy (145) holds, any dimensionless
anisotropic observables made of ratios between anisotropic and isotropic projectionsaifeor-

relation function vanishes in the small-scales limit. For example, focusing on the decomposition of
longitudinal structure functions (44) we may write

(n)
Sjm (r) L) )

lim ~r% T 0. (146)

r=0 (556 ()
A new phenomenon occurs when anisotropic fluctuations are assessed by using dimensionless observ
ables made oflifferentcorrelation functions. For instance, by using again$a3) decomposition of
longitudinal structure function (44) one may build up anisotropic observables defined as
(n) SJ(,:“) ) w1
Rin =z ~7 W4T =875k (147)

This is thenth-order moment of the velocity probability density function, normalized by its isotropic
second-order moments. The quantities defined in (147) must be exactly zero in isotropic ensembles, and
should go to zero as power Iav\B(.'Z (r) ~ rJ/3,in an anisotropic ensemble in which the dimensional
scaling (46) is satisfied. On the other hand, results from experiments and numerics show a much slower
decay, and, in some cases, no decay af7al9]. We refer to this phenomenon asakviolation of
thereturn-to-isotropy Such a weak violation is not in contradiction with the inequalities (145); there the
relative importance of anisotropic fluctuations with respect to isotropic fluctuation shthecorrelation
function are implied. The violation of the dimensional recovery-of-isotropy is simply due to the existence
of anomalous scaling in the anisotropic sectors. Indeed, in this case, the exp;@ﬁé,rgnverning the
LHS of (147) can assume values much smaller than the dimensional estimate (including negative values!).
This is exactly what is observed in the experiments and numerics. Fate 3one realizes that due
to the presence of anomalous scaling in the anisotropic sectors we have a slow recovery-of-isotropy, in
agreement with what was explained before.

The anisotropic observables built in terms of the generalized flatness or skewness discussed in
Section 2.5 are nothing but Eq. (147) evaluated at the dissipative length sealg, Therefore, the
“persistence-of-anisotropies” discussedr24] can be explained invoking the very same reasoning.
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Table 2

Measured scaling exponents /271 (r) of various orders in two experiments

(.29 +1) 1.1) (1.3) (3.1) (5.1) (3.3) (1,5) (7.1) (5.3) (3.5)
WS 1.05 1.56 1.42 2.02 1.89 1.71 2.33 2.22 1.99
KS 1.22,1.12 1.58,1.54 — — 214,200 — — — —

WS corresponds tf85] and KS to[10].

6.2.2. Summary of experimental results: universality of the anisotropic sectors

Comparing the results obtained|itD,34,35]the following picture emerges. First, all the correlation
functions up to: = 10, showanomalousscaling behavior, where anomalous is meant with respect to the
dimensional Lumley-like prediction discussed in Section 4.4. Second, the values of scaling exponents
extracted from the two different experimen&b,10] are in good qualitative agreement (Sesble 2.
This is an important first confirmation of thmiversalityof scaling exponents in thge= 2 anisotropic
sector. Finally, there exists a clear hierarchy between isotropic and anisotropic scaling exponents, the
latter being always larger for any given ordenf the correlation function. This hierarchical organization
is the necessary and sufficient requirement fordéern-to-isotropyto hold, i.e. the small-scale statistics
of any correlation function is dominated by the isotropic fluctuations. Nevertheless, the gap between
isotropic and anisotropic exponerﬂg,) — 5(2"), tends to shrink whemincreases, implying that anisotropic
contributions may exhibit important sub-leading effects also at very Righ

7. Analysis of DNS data

Direct numerical simulations of turbulence are natural grounds where the utility &8 decom-
position can be exploited to its maximum benefit. The reason for this is that numerical simulations, in
contrast to current experiments, provide access to the full velocity field at all points of the turbulent
domain. Therefore, the fuBbQ(3) decomposition can be realized, without the constraints of best fits to
partial data. Given a tensor structure funct®y (r), cf. Eq. (31), we can integrate it against the spherical
tensorstI’})m (f) [e.g., (35)], on a sphere of radiusThese integrations yield the projection of the structure
function on the different sectors of tI8(3) group, by virtue of the orthogonality of the basis tensors.

On the other hand, DNS suffer from limited Reynolds numbers; consequently they have relatively short
inertial ranges.

Prior to the introduction of th8(Q(3) decomposition, the numerical investigations of anisotropic flows
were focused on either single-point or two-point correlations, limited, often, to the analysis of the Fourier
transforms in wavevector space. The most recent, highly resolved, numerical investigation of this kind
was reported ifd1]; there the full tensorial properties of the Fourier transform of the two-point velocity

correlation,Q*# (k) d:Eff dr €K (u*(x 4+ ruf(x)), were calculated in aomogeneoushear[6,144] The
main result is a confirmation of Lumley’s prediction for the scaling exponent of the purely anisotropic
co-spectrum:

E*P(ky ~ k=73, where E* (k) = / dp 0% (p) , (148)
k/2<|p|<2k
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wherea # f3 to eliminate the isotropic contribution. Similar computations were also performed for the
case of stably stratified turbulenfB45]. Only recently DNS were performed to probe the anisotropic
component in a systematic way by exploiting t8€(3) decompositior{18,38,40,138,146]Here we
review the main findings, showing that

(1) the scaling laws (log—log plots) at moderate Reynolds numbers are significantly improved by pro-
jecting the raw correlation functions onto eagisectors. The improvement is particular noticeable
whenever strong anisotropies are present in the system, as in the case of chanrjaB{tb¢&}

(2) anisotropic sectors withi> 2 (inaccessible in present experimental data) possess good scaling laws
[18,40}

(3) the scaling exponents are discrete and increasing as a functjon of

(4) the exponents amomalousi.e. they differ from the dimensional prediction (46).

(5) there exists preliminary evidence that also for 2, the anomalous exponents araversal i.e. the
scaling properties are independent of the external forcing mechbdsh

DNS were performed both in wall-bounded flows and in homogeneous (but anisotropic) turbulence. In
wall-bounded flows the anisotropies are accompaniemhiymogeneousffects. The presence of such
effects may spoil the very meaning of scaling, and$i@3) decomposition should be supplemented by
some tool to project on the homogeneous components. OtherwiSOtBedecomposition must be used
carefully, and locally, only in those regions of the tested flow where inhomogeneous effects are confined
mostly to large scalef38,146] In the second part of this section, we discuss numerical experiments
built such as to have a perfectiypmogeneouandanisotropicstatistics at all scales. One such example

is homogeneous shear floj20,42] More recently, other homogeneous anisotropic flows have been
invented and simulated, in particular the random-Kolmogorov flb&40,147]and a convective cell

with an imposed linear mean profile of temperatr&g].

7.1. Anisotropic and inhomogeneous statistics: channel flows

In this section, we discuss the analysis of a DNS of a channel flow usir&Qt8 decomposition. The
coordinates are chosen such thay andz are the stream-wise, span-wise, and wall-normal direction,
respectively. The simulation was done on a grid with 256 points in the stream-wise direction antZ8
points in the two other directions. The boundary conditions were periodic in the span-wise and stream-
wise directions and no-slip on the walls. The Reynolds-number based on the Taylor micro-scale was
quite moderateR,; ~ 70 at the center of the channel= 64). The simulation was fully symmetric with
respect to the central plane. For more details on the averaged quantities and on the numerical code, set
Refs.[38,148,149]

The analysis focused on longitudinal second-, fourth- and sixth-order structure functions:

S 1) = ([6uer®, N,  Sue(rS 1) =F-[uCC+r,1) —u@®—r,0] .

Ther€ coordinate specifies the location of the measurement (i.e., the center of mass of the two measurement
points), and Ris the separation vector. Previous analysis of the same da{dd8$as well as of other DNS
[150]and experimental daff,77]in anisotropic flows found that the scaling exponents of energy spectra,
energy co-spectra and of longitudinal structure functions exhibit strong dependence on the pgsition
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Fig. 15. Log—log plot of the isotropic sector of the fourth-order structure funcﬂéﬁl&(r), vs.r at the center of the channel
rg =64 (+). The data represented by ) correspond to the raw longitudinal structure functistf) (rf =64, rx) averaged over
the central plane only. The dashed line corresponds to the intermittent isotropic high-Reynolds number e%%oa&n?&

For example, irf21] the authors studied the longitudinal structure functions at fixed distances from the
walls:

S, z) = ((ux(x +7,9,2) — ux(x, ¥, )",

where(- - - ), denotes a spatial average on a plane at a fixed hgighkt z < 64. For this set of observables
they found that: (i) These structure functions did not exhibit clear scaling behavior as a function of the
distancer. Consequently, one needed to resort to extended-self-similarity (B83h order to extract

a set of relative scaling exponerts (z) = (™ (2)/¢® (2): (ii) the relative exponent$” (z) depended
strongly on the height. Moreover, only at the center of the channel and very close to the walls the
error bars on the relative scaling exponents extracted by using ESS were small enough to claim the very
existence of scaling behavior in any sense. Similarly, an experimental analysis of a turbulent flow behind
a cylinder[77] showed a strong dependence of the relative scaling exponents on the position behind the
cylinder for not too big distances from the obstacle, i.e. where anisotropic effects may still be relevant
in a wide range of scales. In the following, we present an interpretation of the variations in the scaling
exponents observed in non-isotropic and non-homogeneous flows upon changing the position in which
the analysis is performed. In particular, we will show that decomposing the statistical objects into their
different(j, m) sectors rationalizes the findings, i.e. scaling exponents in giiem) sector appear quite
independent of the spatial location; only tAmplitudesof the SQ(3) decomposition depend strongly

on the spatial location. The analysis showed three major results. The first was the vast improvement in
scaling behavior of the structure functions as a result of the decomposition. A typical example is found in
Fig. 15where the raw fourth-order structure function, evaluated on the central plane, is compared to its
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centered at¢ = 64 (+), and at¢ = 32(0J). Also two horizontal lines corresponding to the high-Reynolds number lingg,1
and to the K41 non-intermittent value, 2, are shown.

j =0 component. Without th8Q(3) decomposition there is no scaling behavior at all and one needs ESS
to estimate the scaling exponents. On the other hand,#@component of the structure function shows

a clear scaling behavior with the expected exportéﬂt,—_ 1.28. This strengthens the foliation hypothesis,
according to which, the raw structure function is a superposition of power laws from different sectors of
the SQ(3) group. Such a sum loses its scale invariance once the weights of the different exponents are
of the same order and the inertial range is small. In such cases, one ne&f¥3heecomposition to
isolate the different sectors and retain scale invariance.

A second prominent result is the apparent universality of the isotropic exponents. To show3Bis in
the local slopes, dlqgé‘é) ) /dIog(S((,%) (r)), of the ESS curves of the isotropic fourth-order structure-
function versus the isotropic second-order structure function were calculated at varying the distance from
the wall. Despite their different locations, all curves show the same ESS slope 1.82, which is the expected
(anomalous) value. IRig. 16 one picture is presented for the logarithmic local slopes at two different
distances from the channel boundary. To appreciate the improvements in scaling and universality, also
the slopes of the ESS on the raw structure functions are presented. Finally, the analysis provided another
evidence that thg¢ = 2 scaling exponent of the second-order structure function is al8utvhich is the
dimensional theoretical prediction given in (27) (see §t8,96—-98). Considering the relatively low
Reynolds number and the fact that the prefaaiggsin theSQ(3) decomposition (145) are non-universal,
together with the experimental result reported1f,33-35] these findings give strong support to the
view that the scaling exponent in the= 2 sector is universal. Before concluding this section we cite
that SO(3) and SQ(2) decomposition have also been exploited in the analysis of channel flow data to
highlight the importance of structures as streaks and hairpin filaments typical of many wall-bounded flows
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Fig. 17. Log-log plot of instantaneous energy spectrum in the isotropic sE¢tgr(top). The straight line is the reference

isotropic k—%/3 power law. Instantaneous co-spectruin; (k;) (bottom). Here the straight line gives the refererkg;_ew3
anisotropic Lumley prediction. The two spectra have been shifted along the vertical direction for the sake of presentation.

[146]. Preliminary investigation of the importance ®0(3) decomposition to evaluate the performance
of sub-grid models used in large eddy simulatigtsl] have also been reported[ibt47]. A posteriori
tests on different LES models for strongly anisotropic flows were presen{é82h

7.2. Anisotropic-homogeneous flows

Direct numerical simulations offer the unique opportunity to study the physics of anisotriaggain
situations, that is in perfectly homogeneous flows. Recently, considerable effort has been spent on sim-
ulating a random-Kolmogorov-Flow (RKF18,40,147] The RKF is fully periodic, incompressible and
with anisotropic large-scale energy injection. A convenient choice for the forcifig=i¢0, O, f,(x))
with f;(x) = F1cod2nx /Ly + ¢1(t)] + F2cod4nx/L, + ¢,(¢)], with constant amplitudesy » and
independent, uniformly distributed;correlated in time and with random phasgs,(¢). The random
phases lead to a homogeneous statistics. To give a first validation of the statistical properties of the RKF
flow we plot inFig. 17the instantaneous energy spectrum,

E(k) = / (@ - u*(@) dq .
[al=k

It exhibits a scaling law in close agreement with the K41 isotropic behavie. Also purely anisotropic
quantities as the co-spectra (148), show a good agreement with the LumiléyDNS of the RKF were
reported in[18,40,147] The resolution was 256reachingRe, ~ 100, collecting up to 70 eddy turn

over times. A long-time average is necessary because of the formation of persistent large-scale structures
inducing strong oscillations of the mean energy evolution. This is typical to many strongly anisotropic
flows. The viscous term was replaced by a second-order hyper-viscesi§u. Thanks to both the high

degree of homogeneity and to the high number of independent samples, a quantitative analysis of scaling
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Fig. 18. Analysis on the real space. Log—log pIotSé%) (r) versusr (top curve), and of the three undecomposed longitudinal

structure functions in the three directionsy, z (three bottom curves). The straight line gives the best fit s@é%e: 0.7. Inset:
logarithmic local slopes of the same curves in the main body of the figure (same symbols). Note that only the projected curve
shows a nice plateau.

laws of longitudinal structure functions up to the anisotropic segter6 and up to orden = 6 was
possible. In other words, the longitudinal structure functions could be decomposed according to

6
SO0y =" 3" S @) forn<é.

j=0 m=—j

In Fig. 18we present the results for the isotropic sector. Here we compare the raw structure functions
in the three directions with the projectiaﬁ%) (r), and their logarithmic local slopes (inset). Only for the
projected correlation it is possible to measure (with 5% of accuracy) the scaling exponent by a direct
log—log fitvs. the scale separation. The best fit gb&@& 0.70+0.03. On the contrary, the undecomposed
structure functions are overwhelmed by the anisotropic effects present at all scales, and the scaling law is
completely spoiled. We stress the accuracy of these results; already at these modest Reynolds numbers i
is possible to ascertain the isotropic scaling laws if the anisotropic fluctuations are disentangled properly.
In Fig. 19there is an overview for the second-order structure functions in all the sectors, isotropic and
anisotropic, for which the signal-to-noise ratio is high enough to ensure statistically stable results. Sectors
with odd j are absent due to the parity symmetry of the longitudinal structure function. We conclude from
Fig. 19a clear foliation in terms of thg index: sectors with the samebut differentn exhibit very close
scaling exponents. Ifiable 3the measured exponents are compiled, showing the best power law fits for
structure functions of orders= 2, 4, 6. We stress again the discreteness and monotonicity of the scaling
exponents as assumed in Eq. (145); there is no saturation of the exponents as a functi®acoind,
the measured exponents in the sectots4 and 6 are anomalous, i.e. they differ from the dimensional
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Fig. 19. Log-log plot of the second-order structure function in all sectors with a strong signal. Symbols refer tq geatoas
follows: (0, 0), (+); (2, 2), (x); (4,0), (O); (4, 2), (x); (6,0, (o); (6,2), (W). The statistical and numerical noise affecting the
SQ3) projection is estimated as the threshold wherejthe6 sector starts to deviate from the monotonic decreasing behavior,
i.e.0(1073).

Table 3

Summary of the numerical and experimental findings for the scaling exponents in the isotropic and anisotropic sectors
n j=0 ¢§"—n/3 j=2 ’—n+2)/3 j=4 ) —(m+4/3 j=6 () —(n+6)/3

2 0.70 (2) — 0.66 1.1(1)—1.33 1.65 (5) — 2.00 3.2(2) —2.66

4 1.28 (4) —1.33 1.6 (1) —2.00 2.25 (10) — 2.66 3.1(2)—3.33

6 1.81 (6) — 2.00 2.1(1)—2.33 2.50 (10) — 3.33 3.3(2)—4.00

The values for the anisotropic secfos 2 are taken from the experimeifil®,35]. For the values extracted from the numerical
simulation (columng =0, 4, 6), error bars are estimated from the oscillation of the local sIptis447] For the experimental
data the error is given as the mismatch between the two experiments. For all sectors we also give the dimensional estimate

& =+ /3018,

estimate given in 46. Unfortunately, from the RKF data it was not possible to obtain clean results for the
j = 2 sector. This is because of the presence of an annoying change of sign in the projﬁgji()ﬂs

for anym (and any orden). Still, the overall consistency of the foliation and hierarchical organization

of scaling exponents can be checked by collecting the scaling exponents jinttZesector from the

two sets of experimen{d0,35] previously discussed. IRig. 20we show both numerical data and the
experimental values as extracted fr{lf,35] The resulting picture is fully coherent: experimental data
coming from thej = 2 sector fit well in the global trend. As one can see fiable 3all the anisotropic
sectors shovanomalousscaling laws.
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7.2.1. Universality of anisotropic fluctuations

The third numerical experiment that we discuss here is devoted to sinishgrsal properties of
anisotropic scaling. We have already commented that there is a nice qualitative and quantitative agree-
ment between the values extracted for jhe 2 sector (the only one available from experimental data)
from different experiments. In order to check whether this universality holds also in higher anisotropic
sectors one has to rely on DNS. [It38] a first direct comparison between anisotropic scaling of lon-
gitudinal structure functions from two different homogeneous systems, the RKF hathageneous
Rayleigh—Bénardonvective flow was reported.

A Homogeneous Rayleigh—Bénardsystem is a convective cell with fixed linear mean temperature profile
along the vertical direction. The flow is obtained by decomposing the temperature field as the sum of a
linear profile plus a fluctuating parf,(x, y,z;t) = T'(x, y,z: t) + (AT /2 — zAT/H), whereH is the
cell height and\T the background temperature difference. The evolution of the system can be described
by a modified versioiil 53] of the Boussinesq systefh54]

ou+ (u-Viu=-Vp+ WU+ agT's |

AT
o,T' + (u-V)T' =kV2T' — —ve

whereux is the thermal expansion constant&and the kinematic viscosity and the thermal diffusivity
coefficients, ang is the acceleration due to gravity. [b38] fully periodic boundary conditions were
used for the velocity fieldy, and temperaturd,’, fields.

Anisotropic effects in the Rayleigh—Bénard system were analyZd@8]j starting from the stationary
equation for the second-order velocity structure functions; the extension of KArman—Howarth equation
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in the presence of a buoyancy tefh%5]. The result is, neglecting for simplicity tensorial symbols:

(sum)® ~ & + ogzr- (6T (r)ou(r)) , (149)
j=01,... =0 j=1 ® j=12..

wheree denotes the energy dissipatio(r?iu(r)3) and (67 (r) ou(r)), the general third-order velocity
correlation and temperature—velocity correlation, respectively. In Eq. (149) for each term the value of
its total angular momentuny, is indicated. Notice that the energy dissipation term in (149) has a non-
vanishing limit, for highRe only in the isotropic sectoy,= 0. On the other hand, the buoyancy coupling,
g2, brings only angular momentuyn= 1. Due to the usual rule of composition of angular momenta we
have that the buoyancy termgz- (5T (r) éu(r)), has aotal angular momentum given bjjot =1® j =

{j — 1, j,j+ 1}. Using the angular momenta summation rule foone can decompose the previous
equation obtaining the following dimensional matching, in the isotropic sector:

(Ou(r)®) j—o ~ € r + ag2r (5u(r)dT (r)) j_q + - -
and in the anisotropic sectors3 0:
((3u(r)3)j ~ag Zr(ou(r)oT (r))j—1) + - , (150)

where sub-dominant contributions coming from thend j + 1 sectors ofév(r)dT (r)) are neglected.

In the isotropic sector the buoyancy term is sub-dominant with respect to the dissipation term at
scales smaller than the Bolgiano lengtly, = (6)%*N~3/4(0g)~%/2 whereN is the rate of temperature
dissipation. This is the case for the numerical simulation presen{d®8&), where velocity fluctuations
are closer to the typical Kolmogorov scalirg,(r) ~ r1/3, rather than to the Bolgiano—Obukhov scaling
[1], du(r) ~ r3/°.

Regarding the anisotropic sectors, Eq. (150) isdimensional predictiofior the system, consistent
with the anisotropic properties of the buoyancy term, sector by sector.

In [138] the SQ(3) decomposition was applied in this system to velocity structure functions (44) and
to objects

G (r) = ([ur) —u©) - FIUT @) = TO)) =Y GEVr) .
jm

The dimensional matching of Eq. (150) can be extended to any order, giving

(p) (p—2,1)
Sjm (r) ~ rijl’m (r) .

1 i (Qvl) H H H 1) X(g,l)
Denoting Wlth;{j the anisotropic scaling exponents of the buoyancy te(ifﬂ,;, (r)y ~r* we get
the dimensional estimate

(P =1+ 42 (dimensional prediction) . (151)

In [138] it was shown that this dimensional prediction is not obeyed; the expom}?htappear to be
systematically smaller than prediction (151). Interestingly, enough the log—log plots computed in the
sectors;j = 4, 6 show a good qualitative agreement with those calculated in the RKF of4%fas

can be seen ifrig. 21where we compare the projection on the= 4 sector of structure functions of
different orders. Similar results are obtained joe 6 sector. These preliminary findings, if confirmed
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Fig. 21. Log—log plot of compensated anisotropic 4, m =0 projectionssf"’g (r)/r*»4] vs.r, for both HRB and RKF flows. Top

curves refer tgp = 2: the best fit exponents which compensate HRB and RKF curvéﬁzéﬁe 17 and‘gf) =1.66, respectively.
Curves in the middle refer to the same quantities bupfer 4: compensation has been obtained \A?Efﬂ = 2.05 for HRB, and

C(4) = 2.2 for RKF. Bottom curves refer tp = 6: heregf) = 2.3 for HRB, andif) = 2.5 for RKF. Notice that the curves of
the two flows are compensated with very similar values of the exponents (within 10%). Inset: the samej ba#fon = 2,
compensation has been done with the same values usgd<far, m = 0, to show the independence of the scaling exponents
from the choice of the reference axis labeled with

by other independent measurements, would supartersality for anisotropic scaling exponents in
three-dimensional turbulence.

7.3. Scaling of longitudinal and transversal structure functions

As discussed in Section 2.6 there exists experimental and numerical data suggestioggihadi-
nal andtransversalstructure functions in supposedly isotropic flows show different scaling exponents

[34,67—70] One needs to distinguish clearly between experimental and numerical data. The former can
never be considered fully isotropic; the best one can do is to try to perform a multi-fit procedure to
clean out sub-leading anisotropic contributions as already explained in detail in Section 6. This fitting
procedure is, of course, affected by experimental errors which cannot be eliminated. Therefore it is quite
dangerous to make any firm conclusion about supposed different scaling exponents of longitudinal and
transversal isotropic scaling on the basis of only experimental data. Numerical data are not much safer.
Here anisotropy can be much better controlled. With isotropic forcing the only source of anisotropy is
the three-dimensional grid whose effect is usually too small to explain possible discrepancies between
longitudinal and transversal scalings. Indeed some state-of-the-art isotropic DNS indicate the possibil-

ity of different scaling exponents both for inertial range structure functié@ksand for coarse-grained
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Table 4
Measured values of the longitudinal (first raw) and transverse (second raw) scaling expoRents 460 taken fron{69]

n 2 4 6 8 10
(g 0.701 (14) 1.29 (3) 1.77 (4) 2.17 (7) 2.53(9)
(& 0.709 (13) 1.27 (2) 1.67 (4) 1.93 (9) 2.08 (18)

One should note that the scaling range displayed by the scaling p[6&] iare relatively short, indicating that finiReeffects
may still be rather important.

energy and enstrophy measufé%,156] In Table 4we summarize the best-fit values of the scaling
exponents measured jB9]. The small-scale fluctuations were proljé86] by comparing the scaling

of the coarse-grained energy dissipation over a box ofrsizé’) (Eq. (17)), and of the coarse-grained
enstrophy dissipations(r, x) = (1/r3) f|y|<r dyw(x 4+ y) wherew(x) is the local enstrophy dissipation.
Different scaling exponents were measured for the averaged quantié€sr)), (o (r)). Being scalar
guantities, in isotropic ensembles these should not have different exponents. From the theoretical point of
view, different scaling exponents of longitudinal and transverse structure functions in isotropic ensembles
are unlikely. In the language of tf8)3) decomposition, it amounts to the scaling exponents depending

on theg-index which labels different basis functions with the same rotation properties. In the exactly
solvable models examined before, this never happened. In general, one would need a different symmetry
to lift the degeneracy of differemt dependent basis functions. At this point this problem remains some-
how unsettled. New numerical tests on larger grids and/or with a better resolved viscous behavior are
needed before a firm statement can be made.

7.4. Anisotropies in decaying turbulence

Decaying turbulence has attracted the attention of various communities and is often considered in
experimental, numerical and theoretical investigatifins,157] It is in fact quite common that even
experiments aimed at studying stationary properties of turbulence involve processes of decay. Important
examples are provided by a turbulent flow behind a grid [588] and references therein) or the turbulent
flow created at the sudden stop of a grid periodically oscillating within a bounded 68k In the former
case, turbulence is slowly decaying going farther and farther away from the grid and its characteristic
scale becomes larger and larger (EEe8] for a thorough experimental investigation). Whenever there
is sufficient separation between the grid-sizg and the scale of the tunnel or the tabk> Li,, a
series of interesting phenomenological predictions can be derived. For example, the decay of the two-
point velocity correlation function, for both isotropic and anisotropic flows, can be obtained under the
so-called self-preservation hypothesis (fgeChapter XVI). That posits the existence of rescaling
functions allowing one to relate correlation functions at different spatial and temporal scales. By inserting
the rescaling function into the equations of motion, asymptotic results can be obtained both for the final
viscosity-dominated regime and for the intermediate asymptotic when non-linear effects still play an
important role.

Here, we review some recent attempts to investigate the decay of three-dimensional homogeneous anc
anisotropic turbulence by direct numerical simulations of the Navier—Stokes equations in a periodic box
[160] for both short and large times. The initial conditions are taken from the stationary ensemble of the
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random Kolmogorov flow discussed in the previous subsection. Here the correlation length-scale of the
initial velocity field Lj, is of the order of the size of the bdxy ~ Lj,.

Onthe one hand, one is interested in the long-time decay regime where the typical interesting questions
are: (i) how do global quantities, such as single-point velocity and vorticity correlations, decay? (ii) What
is the effect of the outer boundary on the decay laws? (iii) Do those quantities keep track of the initial
anisotropy? (iv) As for the statistics of velocity differences within the inertial range of scales, is there
a recovery of isotropy at large times? (v) If so, do strong fluctuations get isotropic at a faster/slower
rate with respect to those of average intensity? (vi) Do anisotropic- and isotropic-fluctuations decay
self-similarly? (vii) If not, do strong fluctuations decay slower or faster than typical ones? On the other
hand, the interest in the early stages of the decay is led by a hope of establishing a link between the
small-scale velocity statistics in this phase and in forced turbulence. If such links existed, they would
shed additional light on the universality of forced turbulence. As turbulence decays, the effeetive
decreases, while the viscous characteristic scale and time increg$60])man offline analysis at fixed
multiples{0, 1, 10, 10?, 103, 10%, 10°, 10°} 1 of the initial large-scale eddy turnover tinag= Lo/u/73
was performed.

Afirst hint on the restoration of isotropy at large times can be extracted from the analysis of single-point
guantities as

Eip=ui(X,u;(x, 1), Qi = w;(X, t)wr(X,1).

Here with-—~we denote the average over spatial coordinates only, whereamdicates the average over
both initial conditions and space. The symmetric matriEgé) andQ;;(¢) can be diagonalized at each
time-step and the eigenvalugs(t), E-(t), E3(t) andQ(z), Q2(1), Q3(¢) can be extracted. The typical
decay ofE; (r) andQ; (r) fori =1, ..., 3is shown inFig. 22 During the self-similar stage,e [10, 106],
the energy eigenvalues fall off &3, > 3y ~ 1—2, as expected for the decay in a bounded dorfidif,161]
The enstrophy eigenvalueg; » 3, decay ag 12> as predicted from a simple dimensional argument
[160]. To focus on the process of recovery of isotropy in terms of global quantities one may track the
behavior of two sets of observables:

(Ei(t) — Ei(1)) (Qi(1) — (1))

ME@) = "2 28 00 = ,
EO=Eorao0 T "% @0+ an)

which vanish for isotropic statistics. Their rate of decay is therefore a direct measurement of the return to
isotropy. The energy matrik;; is particularly sensitive to the large scales while small-scale fluctuations
are sampled by;;. As seen fronfig. 23 both large and small scales begin to isotropize after roughly
one eddy turnover time and become fully isotropic (within statistical fluctuations) after 100 eddy turnover
times. However, small scales show an overall degree of anisotropy much smaller than the large scales.

Concerning small-scales propertieq,160] a simple anisotropic generalization of the self-preservation
hypothesis (see e.g. R¢5]) was proposed:

SO 1) = VIO [0 (/L jm (1)) .

jm

Here WI'[hV(n)(t) we take explicitly into account the fact that large-scale velocity properties may depend
in a non- tr|V|aI way on both(j, m) and the orden. FurthermoreL ;, (¢) accounts for the possibility
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Fig. 22. Log—log plot of the eigenvalues of energy and vorticity matrices vs. time, expresgadhit.

that the characteristic length scale depend orSIB@) sector. In analogy with the observations made in
the stationary cagd.0,18,33,34,38—-40,6@ scaling law was postulated:

(1)

PN roo\Y
Sjm(r, 1) ajm(t)<ij(t)) - (152)

The time behavior is encoded in both the decay of the overall intensity, accounted by the prefactors
a(.'r’,f (1), and the variation of the integral scaleg,, (r). The representation Eq. (152) is the simplest one
fitting the initial time statistics for = 0 and agreeing with the evolution given by the self-preservation
hypothesis in the isotropic case. The power-law behaviorf/f@l)r(r/ij(t)) can be expected only in

a time-dependent inertial range of scaj€és <r < L(r). As for the exponents appearing in (152), their
values are expectedly the same as in the stationary case. Concerning the time evolution, it seems difficult
to disentangle the dependence due to the decay;hﬁ) from the one due to the growth of the integral
scaleL ;,(t). The existence of a running reference scélg, (¢) introduces some non-trivial relations
between the spatial anomalous scaling and the decaying time properties, and those relations might be
subject to experimental verification. In the case discussgtbid], the fact that the initial condition has

a characteristic length-scale comparable with the box size, simplifies the matter. Indeed, we expect that
L, (t) =~ Lo, and the decay is due only to the falI-offmjf}z (t). An obvious shortcoming is that the width

of the inertial range.q/n(¢) shrinks monotonically in time, thereby limiting the possibility of precise
gquantitative statements.
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Fig. 23. Log-log plot of the anisotropy content at the large scalesH(¢), 413E (1), top curves) and the small scalesg $Q(7),
A139Q(t), bottom curves) as a function of time, expresseepinnit. The large-scale (small-scale) anisotropy content is defined
as the mismatch between the eigenvalues of the single-point velocity (vorticity) correlation.

7.4.1. Long time decay
A quantitative way to define the temporal rate of recovery of isotropy at a fixed scale in the inertial
range is given by the dimensionless ratio

S, n
Jm Si

™ _
(r,1) = (”)(r t)

jm

(153)

In Fig. 24 we pIotH(”) (r, t) atr =80 for structure functions of order= 2, 4, 6 and for the most intense
anisotropic sectorj, m) = (4, 0). All anisotropic sectors, for all measured structure functions, decay
faster than the isotropic one. The measured slope in the decay is but 0.3 for all n, within the
statistical errors. Note that these results agree with the simple picture that the time dependence in (152)
is entirely carried by the prefacton%’lz () and the value of the integral scalks,, (1) is saturated at the

size of the box. Indeed, by assuming that large-scale fluctuations are almost Gaussian we have that the

leading time dependence ojz ") is given byaﬁaé%" 2 For the isotropic sectoa,(z") (a(z))” and

plugging that in (153), one get&") (r, 1) ~ a' (1) /agy (t) ~ == with Z ~ 0.3(:0.1) independent of
n. The quality of data is |nsuff|C|ent to detect pOSS|bIe residual effects dlg,t@), which would make
:5.”) depend om andj because of spatial intermittency.

Let us denote with?(4, r; ) the probability to observe a given longitudinal fluctuatiéum(r, r) = 4
in the directiorr at a given timet. For any given fixed valud and for any given timegt, we can project
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Fig. 24. Hierarchical organization of anisotropic fluctuations at long times. Log—log plot of the anisotropic projections normalized

by the corresponding isotropic projection (see text), at two fixed seate80 and 40 (inset) forn = 2, 4, 6 in the anisotropic

sectorj = 4, m = 0. Symbols read as foIIOWSYfO) (full box); Hffg (star);Hi%) (empty box). The straight line is™* with

5 ~ 0.3. Same symbols in the inset.
P(A,r; 1) on theSQ3) basis functions:

oo
PA =D P £ DY () (154)

Jj=0 m=—j

where now the projection?;,,(r, 4; t) play the role of areffective PDFfor eachSQ(3) sector. The

projection of any longitudinal structure functio§i’ (r, r) on any sector(j, m) can be reconstructed
from the corresponding projection of the PDF on the same seetgs(r, 4; t), by averaging over all

possible:

S0 (r 1) = / dAA" 2 (r, 4; 1)

which establish the link between decompositions (44) and (154).

The interesting fact that the decay properties of the anisotropic sectors are almost independent of
indicates that a non-trivial time dependence in the shape of the PBE'¢, 4; ¢) for j >0 must be
expected. The most accurate way to probe the rescaling propertigs, of, 4; ¢) in time is to compute
the generalized flatness:

(n)
Sjm(r, t) 1(.’1)

(n) — (
K (rn) = — ~ 1%
" (Sior(r, 1)
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Fig. 25. Log-log plot of the generalized flatnes’sj(,';z (r, ) of ordern = 4, 6 for both the isotropic (two bottom curves), and the

anisotropic sectofj = 4, m = 0) (two top curves) at = 80, and as a function of time. In the inset we plot the same quantities,
in the same order, at a different inertial range scate 40.

Were the PDF projection in thg, m) sector self-similar for > g, thenKJ(.frf (r, t) would tend to constant

values. This is not the case for anisotropic fluctuations, as it is showigires The curvesK(.',’n) (r, 1)

are collected for two fixed inertial range separations; 80 and 40 (inset), for two different orders,

n = 4, 6 and for both the isotropic and one of the most intense anisotropic sé¢terd, m = 0) . The
isotropic flatness tends toward a constant value for lar@®nversely, its anisotropic counterparts are
monotonically increasing with indicating a tendency for the anisotropic fluctuations to become more
and more intermittent as time elapses. Also the behavibign25is in qualitative agreement with the
observation previously made that all the time dependence can be accounted for by the plzejf,%ot))rs
Indeed, assuming that the length scalgg, () have saturated and that the large-scale PDF is close to
Gaussian, itis easy to work out the predictiot f(r, 1) ~ t=51=1/2) jj e 4" = E(n/2—1). We conclude

this section with a brief summary of the results. It was found that isotropic fluctuations persist longer than
anisotropic ones, i.e. there is a time-recovery, albeit slower than predicted by dimensional arguments,
of isotropy during the decay process. It was also found that isotropic fluctuations decay in an almost
self-similar way while the anisotropic ones become more and more intermittent. Qualitatively, velocity
configurations get more isotropic but anisotropic fluctuations become, in relative terms, more “spiky”
than the isotropic ones as time elapses.

7.4.2. Short-time decay
Itis interesting to note that it is possible to relate the small-scale universal properties of forced turbulent
statistics to those of short-time decay for an ensemble of initial configurdli6@¥ As already remarked,
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one cannot expect an universal behavior for all statistical observables, as the very existence of anomalous
scaling is the signature of the memory of the boundaries and/or the external forcing throughout all the
scales. Indeed, the main message we want to convey here is that only the scaling exponents of both
isotropic and anisotropic small-scale fluctuations are universal, at least for forcing concentrated at large
scales. The prefactors are not expected to be so. There is therefore no reason to expect that quantities suc
as the skewness, the kurtosis and in fact the whole PDF of velocity increments or gradients be universal.

This is the same situation that we discussed in great detail in previous sections for the passive trans-
port of scalar and vector fields. However, carrying over the analytical knowledge developed for linear
hydrodynamic problems involves some non-trivial, yet missing, steps. For the Navier—Stokes dynamics,
linear equations of motion appear when we consider the whole set of correlation functions as discussed
in Section 4.3. These equations can be rewritten in a schematic form:

atc(") =+t c@+d) 4\, pmcm L pt) , (155)

wherer®*b is the integro-differential linear operator coming from the inertial and pressure t€ffs,

is a shorthand notation for a genefig)th-order correlator an@™ is the linear operator describing
dissipative effects. Finally ™ is the correlator involving increments of the large-scale foréiagd of

the velocity field. The balance between inertial and injection terms cannot lead to anomalous scaling.
A natural possibility is that a mechanism similar to the one identified in linear transport problems be at
work in the Navier—Stokes case as well. The anomalous contributions to the correlators would then be
associated with statistically stationary solutions of the unforced equations (155). The scaling exponents
would a fortiori be independent of the forcing and thus universal. As for the prefactors, the anomalous
scaling exponents are positive and thus the anomalous contributions grow at infinity. They should then
be matched at the large scales with the contributions coming from the forcing to ensure that the resulting
combinations vanish at infinity, as required for correlation functions. The aim here is not to prove the
previous points but rather to test whether they fail: the Navier—Stokes equations, being integro-differential
and non-local, might directly couple inertial and injection scales and spoil the argument. This effect might
be particularly relevant for anisotropic fluctuations where infrared divergences may appear in the pressure
integrals (see Section 5.3). In order to investigate the previous point, we performed two sets of numerical
experiments in decay.

The first set, A, is of the same kind as in the previous section, i.e. we integrated the unforced
Navier—Stokes equations with initial conditions picked from an ensemble obtained from a forced
anisotropic stationary run. Statistical observables are measured exssambleaverage over the dif-
ferent initial conditions. The ensemble at the initial time of the decay process therefore coincides with
the stationary state in forced runs. If correlation functions are indeed dominated at small scales by sta-
tistically stationary solutions of the unforced equations then the field should not decay. Specifically, the
field should not vary for times smaller than the large-scale eddy turnovergimienose are the times
when the effects of the forcing terms start to be felt. Note that this should hold at all scales, including the
small ones whose turnover times are much faster than

The second set of numerical simulations (set B) takes the same initial conditions but for the random
scrambling of the phases; (k) — P;;(K)ug(k) exp(i6; (k)), with 6;(k) i.i.d. random variables. In this
way, the spectrum and its scaling exponent are preserved but the wrong organization of the phases is
expected to spoil the statistical stationarity of the initial ensemble. As a consequence, two different
decays are expected for the two sets of initial conditions. In particular, contrary £9 setB should
vary at small scales on times of the order of the eddy turnover timesr?/3. This is exactly what has
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Fig. 26. Top: temporal decay of the second-order anisotropic structure fuﬁéﬁcm 1), rescaled by its value at=0. Herer =30,

inside the inertial range. The two curves refer to the time evolution of the structure function starting from the forced-stationary
velocity fields (squares, s&) and from the randomly dephased velocity fields (circlesBselime is normalized by the integral

eddy turnover time. Notice that for sBtwe observe changes on a time scale faster than the integral eddy turnover time. That

is to be contrasted with the case A, where structure functions are strictly constant in time up to an integral eddy turnover time.
Bottom: the same curves but for the fourth-order structure function.

been found in the numerical simulations for both isotropic and anisotropic statistics as can be seen for
the anisotropic case iRig. 26 where the temporal behavior of longitudinal structure functions of order
2 and 4 is shown. The scaling exponents of the contributions responsible for the observed behavior at
small scales are thus forcing independent.

To conclude, the data presented here support the conclusion that non-local effects peculiar to the
Navier—Stokes dynamics do not spoil arguments on universality based on analogies with passive turbulent

transport. The picture of the anomalous contributions to the correlation functions having universal scaling
exponents and non-universal prefactors follows.

8. Concluding discussion

In this review, we presented a mathematical framework in which anisotropy in turbulence can be
studied, and we have tested its utility in the context of experimental analysis, humerical simulations
and analytical models. The basic idea is to express the various statistical quantities of turbulence (e.g.,
structure functions, correlation functions) in terms of their projections on the different sectors of the
SQ(3) group.

The utility of theSQ(3) decomposition should be assessed in two main aspects. The first aspect is its
functionality as a tool for characterizing anisotropy, whereas the second, and deeper aspect, is its physical
relevance and the theoretical and analytical advantages that are gained by using it.
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As atool for describing anisotropy, t18(3) decomposition is probably the most natural and general
method. It is othigh resolutior—it subdivides the observed anisotropy into different sectors-the)
sectors. The weights of the various sectors give us a fine resolution of the anisotropy structure. Instead
of having one measure for anisotropy (e.g., the overall percentage of anisotropy), we have an infinite set
of numbers that compose a detailed profile of the anisotropy structure.

The SO(3) decomposition is also veryeneral It is applicable to any physical observable that has a
well-defined transformation under rotations. These can be, for example, correlation functions, structure
functions or Green’s functions (response functions). The observables themselves may depend on any
number of space coordinates or even be space independent. They may also be scalars, vectors or tensor
Any such guantity can be presented as a sum of parts that belong to the diffgrantsectors of the
rotation group. Additionally, since th8Q(3) decompaosition is invariant to isotropic operations, it is
invariant to the most common operations that we use. For example, to obtaitntbeder longitudinal
structure function we can take the fath-order structure function (which is a tensor) and contract it with
n unit vectors in the direction of the separation distance. Since this operation is linear and isotropic, it
will preserve the j, m) sectors of the full structure function. That s, tlyem) sector of the full structure
function will be transformed into the sanig, m) sector of the longitudinal structure functions. The
same thing happens for operations such as differentiations (for example when we look at moments of the
gradient fields), space averaging, time averaging, coordinate fusion, etc. From the pure theoretical point
of view, the first and most obvious advantage of using3SfE3) decomposition is its elegance and the
overwhelming simplification that it offers in analytical calculations. Bt&3) decomposition may also
have a deeper physical justification if it produces universal quantities such as distinct scaling behavior in
the anisotropic sectors. There are several different pieces of evidence that suggest that this is indeed the
case. Experimental results clearly show that a better scaling is achieved if we takej fughmronents
into account. Additionally, different experimental setups seem to lead to the same numerical values of
the anisotropic exponent. This is a strong support for the hypothesis that the anisotropic sectors of the
structure functions have universal exponents. Another support for the idea tis@(B)edecomposition
exposes universal quantities, comes from numerical simulations. In DNSQ{3 decomposition can
be performed directly (since the velocity field is accessible in every pointin space and time) which makes
the results much less ambiguous. We clearly see that even in the very moderate Reynolds numbers of
the simulations, a scaling behavior is detected once we us8@® decomposition. In some cases,
without theSQ(3) decomposition, no scaling behavior is seen at all. Furthermore, the resulting exponents
in the isotropic sector are remarkably similar to the experimental values which are measured at very high
Reynolds numbers. This is a strong indication that at least the isotropic sector has a universal profile, and
therefore by disentangling it from the anisotropic sectors we get universal results. In other sectors of the
rotation group, the scaling behavior is not as good, and in some sectors there is no scaling at all. However,
in those sectors where scaling was detected, the scaling exponents seem to agree with the theoretical an
experimental predictions. Sectors with sajrand differentms had the same scaling exponents (when
scale invariance was observed). And finally, all exponents increased as a functiqoroer of the
structure function) as well gst is still not clear whether the “bad”, non scale-invariant behavior that
was detected in some sectors, is a result of the poor Reynolds numbers of the simulations, or is a genuine
effect that tells us that the foliation picture is incomplete. A further research with higher resolution is
probably needed to settle this issue. In the Navier—Stokes case one can prove a “weak foliation”. Weak
foliation is an approximate foliation that happens in the case of weak anisotropy, when we linearize the
anisotropic part of the theory around its isotropic part. In such case, the linearized anisotropic part of
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the theory is subject to a linear and isotropic equation whose kernel contains the isotropic solution, and
hence foliation occurs. This is a very robust approximation since it holds for virtually any non-linear
and isotropic theory in the case of weak anisotropy. Additionally, we know that as the Reynolds number
increases, the statistics becomes more and more isotropic and therefore the linear approximation become!
better and better.

The SO(3) decomposition has a physical relevance also in the presence of strong anisotropy. The
structure functions of the Navier—Stokes equations satisfy a hierarchy of linear equation which serve as
infinitely many constraints that are invariant to all rotations. These constraints exist independently of
the amount of anisotropy in the system. Their linearity and invariance under rotation lead to foliation
and hence one can discuss them in every anisotropic sector independently. In some sectors, they are
sufficient to determine the full solution, whereas in others they can reveal some general properties of the
solution. For example, the isotropic sector of the third-order structure function is completely determined
by the different constraints, and is given by the well-known 4/5 law of Kolmogorov. Note that because
of foliation, this is true also in the presence of anisotropy, which means that the 4/5 law holds also in
the isotropic sector of anisotropic turbulence. In the 2 sectors, on the other hand, the third-order
structure function is given by two undetermined scalar functions, whereas jnth& 6, . .. itis given
by three. Another example is thie= 1 sectors in the second-order correlation function, which must all
vanish.

To conclude, the framework of theQ(3) decomposition provides an elegant and efficient way to
describe anisotropy in turbulence. It also greatly simplifies many analytical calculations that involve
anisotropic quantities, mainly through the mechanism of foliation. This mechanism is presentin simplified
models of turbulence, and may also be valid approximately in Navier—Stokes turbulence. It predicts that the
anisotropic sectors of the statistics have universal properties such as scaling exponents. Further researc
is needed to measure accurately these anisotropic exponents in experiments as well as in humerica
simulations.

There are many issues that await future research. A quantitative computation of the anisotropic expo-
nents in Navier—Stokes turbulence from first principles may very well be an illusive goal. Nevertheless,
there exist important contexts where a careful study of the anisotropic effects may lead to a dramatic im-
provement of understanding the underlying physics. An important example is magneto-hydrodynamics
(MHD), where the magnetic field influences the dynamics of the velocity field through the Lorentz force.
Interesting simulations of MHD with a prescribed, mean magnetic fig8&] (which serves to break the
isotropy) indicate that the magnetic and velocity structure functions exhibit scaling properties that depend
strongly on the intensity of the magnetic field. This apparently contradicts the universality hypothesis.
We propose that a caref8I0(3) decomposition may shed light on this interesting issue. In addition, as-
trophysical flowq163,164]are often subject to strong anisotropy and inhomogeneity which are induced
by the mean field. For instance in the solar wind it was stated that the spectrum of magnetic fluctuations
depends on the distance from the $I65-168] Recent data analysis of solar wind from the Ulysses
spacecraffl69] succeeded to disentangle the isotropic from the anisotropic contributions, supporting the
universality hypothesis. Other cases that await further study include systems in which the anisotropy is
not just a perturbation of the isotropic state such as thermal convection. Here the anisotropy and inhomo-
geneity are so important that the dynamics is driven to very different scaling statistics (characterized by
e.g. the Bolgiano scaling exponents). Similarly in wall-bounded flows very close to the wall one expect
strong deviations from the isotropic statistics. NeverthelessS@®@8) decomposition should be useful
to at least disentangle the isotropic sector from the rest.
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Appendix A. The general form of the second-rank tensor

In this appendix we discuss the general structure of the second-rank correlation functions
Fry = w*x + nuf(x) . (A1)

In (A.1) homogeneitpf the flow is assumed, but not isotropy. Note that this object is more general than
the structure functios®” in being non-symmetric in the indices, and having no definite parity. We wish

to find the basis functionBZ{ijm(f), with which we can represe®*(r) in the form

FP0) =" aq jm(r)BY., () (A2)

q,jm
q,jm

and derive some constraints among the functiags;,, () that result from incompressibility. We shall
see, that due to the isotropy of the incompressibility conditions, the constraints are ame@) with
thesamej, m only.

We begin by analyzing the incompressibility condition: An incompressible flow with constant density
is chaﬁracterized by the relatiodyu*(x, t) = 0 as a result, one immediately gets the following constraints
on F*(r):

0,F*(ry=0, o F*P(ry=o0.

Plugging the trial tensor (A.2) into the last two equations wee obtain 2 equations connecting the different
aq,jm:

0, Y agimBL, E)=0. 8 Y agm)B), ()=0. (A.3)
q,jm q,jm

We first note that the differentiation action is isotropic. As a result?ff(r ) is some arbitrary tensor with

a definitej, m transformation properties, then the ten&ﬂ“ﬁ(r) will havethe samg, m transformation
properties. Components with differepitm are linearly independent. Therefore equations (A.3) should
hold for eachj, m separately.
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Next, we observe that (A.3) are invariant under the transformafiith — FF/*. As a result, the
symmetric and anti-symmetric parts Bf* should satisfy (A.3) independently. To see that, let us write
F*F as a sum of a symmetric term and an anti-symmetric tétifi:= Fg 4 F we then get

0, FP =0, F +o,F =o,Fl" —o,F" =0,
0yF*P =0,FY +0,F =0

from which we concluded, F‘ﬁ =0, F“ﬁ 0. Finally, (A.3) is invariant under the transformatig’ (r)

— F*¥(—ryandas a result the odd parity and the even parity parig6should fulfill (A.3) indepen-
dently. We conclude that a necessary and sufficient condition for (A.3) to hold is that it holds separately
for parts with definitej, m, definite symmetry in the, f indices and a definite parity in

0, Y agjm(r)BY., () =0
q

where the summation is ovgrsuch thatB » Nas a definite indices symmetry and a definite parity.

/f
According to (37) we can write thesmq im 8S:
(1) (—)/ parity, symmetric tensors:

() =175 ®5,(r),
BS Jm(r) = r I[P + rPo*1®;,, (r),
B (#) = =172 P (1),

0 5,Jm(r) = r I T20%0P b ().
(2) (—)/ parity, anti-symmetric tensors:

o B (}) =r=T[r*0f — rfo") D (r).
(3) (—)/*1 parity, symmetric tensors

o B (F) = r=I  rcPr,a, + P, 0,10 (1),
. B“ﬁ (F) = P 8% 4 €, 0 0P 1@ 0 ().
4) (—)/ +1 parity, anti-symmetric tensors:

o By (F)=r=I"ter, b, (r),

o B (F)=r=ItLePio @, (r).
In order to differentiate these expressmns we can use the following identities:

P Y (F) = Y (F)
0, Y () =L+ 1) — j (G + DIr ™ 2Y(R)
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which give rise to

rua“qjjm(r) = jdjjm(r) )
30, ® (1) =0 .

From this point, it is a matter of simple (though somewhat lengthy) algebra to derive the differential
constraints amona, ;, (r). The results are as follows

(1) g €{1,7,9,5}:

/ .1 . 7 2 1 , 1
ay jm(r) = Jrooayjm +jaz j, — Jj°raz jm + ag j, +2r "ag jm =0,

rYa1 jm + af j, + 3 Yaz jm + (j = Dag ,, — (G = 3j +2)r tas ju =0 . (A.4)
(2) q < {3k

aé’jm — jr_1a3,jm =0,

a/3’jm + r_1a3,jm =0. (A.5)

These equations have no solutions other taan;, (r) = 0.

(3) g € {86}

aé’jm + 3r_1ag,jm + (- 1)aé’jm — (j2 —2j+ l)r_lae’jm =0. (A.6)
(4) q € {4 2

r_1a4’jm — a/2,jm + (- l)r_laz,jm =0. (A.7)

There are obviously more unknowns than equations, since we merely exploited the incompressibility
conditions. Nevertheless, we believe that the missing equations that arise from the dynamical hierarchy
of equations will preserve the distinction betwegn;,, of different j, m (again, due to the isotropy of

these equations). Note also, that the above analysis holds also for the second-order structure function

S (ry = (w*x + 1) — O’ x + 1) —uf (07) .

Only that in this case we should only consider the representadioasl, 7, 9,5 for evenj and the
representationg = 8, 6 for oddj. This follows from the fact tha§*#(r) is symmetric with respect to its
indices and it has an even parityrinAlso, in that case, it is possible to go one step further by assuming a
specific functional form for the,_;,, (r). We know that thes*#(r) is expected scale in the inertial range,
and we therefore magssume
B R0

aq,jm(r) =Cq,jmr2%
wherec, ;, are just numerical constants. If we now substitute this definition into Egs. (A.4, A.6), we get
a set of linear equations among #g;,,. These relations can be easily solved and give us two possible
tensors for evein(q = 1, 7, 9, 5) and one tensor form for oddfrom ¢ = 8, 6). This kind of approach
was taken in the two-probes experiment which is described in Section 6.
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Appendix B. Anisotropy in d-dimensions

To deal with anisotropy in-dimensions we need classify the irreducible representations of the group
of all d-dimensional rotationsSQ(d) [170], and then to find a proper basis for these representations. The
main linear space that we work in (the carrier space) is the space of constant tensorgdiitkes. This
space possesses a natural representati®@Oaf), given by the well known transformation of tensors
underd-dimensional rotation.

The traditional method to find a basis for the irreducible representatioB89@f) in this space, is
using the Young tableaux machinery on the subspace of traceless fd7$pig 1] It turns out that in the
context of the present work, we do not need the explicit structure of these tensors. Instead, all that matters
are some relations among them. A convenient way to derive these relations is to construct the basis tensors
from functions on the unit-dimensional sphere which belong to a specific irreducible representation.
Here also, the explicit form of these functions in unimportant. All that matters for the calculations is the
action of the Laplacian operator on these functions.

Let us therefore consider first the spag of functions over the unit-dimensional sphere. The
representation d8Q(d) over this space is naturally defined by

O @0) = V(R ) , (B.1)

where¥ (u) is any function on the-dimensional sphere, amdis ad-dimensional rotation.
94 can be spanned by polynomials of the unit veéto®bviously (B.1) does not change the degree
of a polynomial, and therefore each irreducible representation in this space can be characterized by an
integerj =0, 1, 2,..., specifying the degree of the polynomials that span this representation. At this
point, we cannot rule out the possibility that some other integers are needed to fully specify all irreducible
representations it ; and therefore we will need below another set ofindices to complete the specification.
We can now choose a basis of polynomi@l ,(ii)} that span all the irreducible representations
of SQd) over #4. The indexs counts all integers other thagmeeded to fully specify all irreducible
representations, and in addition, it labels the different functions within each irreducible representation.
Let us demonstrate this construction in two and three dimensions. In two dimers®ugsneeded
since all the irreducible representation are one-dimensional and are spaniied: by= ei® with ¢
being the angle betweehand the vectoé; = (1, 0). Any rotation of the coordinates in an anglg
results in a multiplicative factor'®. It is clear thaty; (i) is a polynomial iniz sinceY; (i) = [i - Pl
wherep = (1, §). In three dimensions = m wheremtakeson 2 + 1 valuesn =—j, —j +1,..., j.
HereY; ,, o e'”’¢P’"(cos 0) where¢ ando are the usual spherical coordinates, a)rj‘?tils the associated
Legendre polynomlal of degree— m. Obviously, we again have a polynomialirof degregq.
We now wish to calculate the action of the Laplacian operator with respegtoto theY; ,(i).
We prove the following identity:

u?d"d,Y; 5 (1) = —j(j +d — Y} (@) . (B.2)

One can easily check that féde=3 (B.2) gives the factoj (j + 1), well known from the theory of angular
momentum in quantum mechanics. To prove this identity fordgmpte that

> ?|ul/Y; () =0 . (B.3)

This follows from the fact that the Laplacian is an isotropic operator, and therefore is diagonal in the
Y; . The same is true for the operatii?~/d%|u|’. But this operator results in a polynomial dnof
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degreej — 2, which is spanned by, »» such thatj’< j — 2. Therefore the RHS of (B.3) must vanish.
Accordingly, we write

O?\ul|Y; o (&) + 20%|ul 1Y 5 + |u! 10V (1) = O . (B.4)

The second term vanishes since it contains a radial derivatiyeoperating ort’; ,(it) which depends
onu only. The first and third terms, upon elementary manipulations, lead to (B.2).

Having theY; ;1) we can now construct the irreducible representations in the space of constant
tensors. The method is based on acting onihg(ii) with theisotropicoperators:*, 0* ands*?. Due to
the isotropy of the above operators, the behavior of the resulting expressions under rotations is similar to
the behavior of the scalar function we started with. For example, the tensoréﬁ@}q,s;(ﬁ), a“aﬁYj,g(ﬁ)
transform under rotations according to ityes) sector ofSQd).

Next, we wish to find the basis for the irreducible representations of the space of constant and fully
symmetric tensors with indices. We form the basis

Bt =M Y ,(0),  j<n . (B.5)

n

Note that wherj and nare evenB;."l(;;;; no longer depends ofa, and is indeed fully symmetric by
construction. Simple arguments can also prove that this basis is indeed complete, anallsfglys
symmetric tensors with indices. Other examples of this procedure for the other spaces are presented
directly in the text.

Finally, let us introduce two identities involving ti&, ; ,. The first one is

Susoa B " = n B3 (B.6)
Znj=Inn+d—-2)—j(j+d—-2)]. (B.7)

It is straightforward to derive this identity using (B.2). The second identity is

DB = Bt j<n 2. (8.8)
i#]

This identity is proven by writing:” in (B.5) asu?u”~2, and operating with the derivative af. The

term obtained ag20” - - . 9%y 2y .0(i1) vanishes because we havelerivatives on a polynomial of
degreen — 2. It is worthwhile noticing that these identities connect tensors from two different spaces.
The space of tensors withindices and the space of tensors with- 2 indices. Nevertheless, in both
spaces, the tensors belong to the sajme) sector of thesQ(d) group. This is due to the isotropy of the
contraction withy*1*2 in the first identity, and the contraction wif*/ in the second identity.

Appendix C. Full form for the j = 2 contribution for the homogeneous case

In this appendix we focus on the decomposition of second-order tensorial structure functions up to
J = 2. For this purpose we define

of

of Qo
STr) =850+ S;_

2(N)
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The j = 0 is well-known and given explicitly by
(2 B
S;Cio(r) = cor-o |:(2 + Céz))éuﬁ C(Z) rrr j| : (C.2)

whereg(z) 0.68 is the known universal scaling exponent for the isotropic contributioncguigl an
unknown coefficient that depends on the boundary conditions of the flow. FpetResector which is the
lowest contribution to anisotropy to the homogeneous structure functiom, h@ (axisymmetric) terms

were derived from constraints of symmetry, even parity (because of homogeneity) and incompressibility
on the second-order structure functi@3]

n?

r rﬁ(n r)2

ST g o) =ar® [(452) ~ 295 - (2@ + o 2P )
’ I"

J

(P (c<2’ 2)

([C(z)] + SC(ZZ) + 6)n*nf — (r*n? +rPn*)(n - r)i|

+bre [ (@ 1+ 32 + 2550 12+ 4 (@ 4 (D + D!

B 2
+P + 1)@ - 2)# (L21% — H(r*n? +rﬂn“>(n-r)}, (C.2)

whereg(z) is the universal scaling exponent for the- 2 anisotropic sector armlandb are independent
unknown coefficients to be determined by the boundary conditions. We would now like to derive the
remainingm = +1, andm = +2 components

=Zaq,2,mré qu(r)
q

As usual theg label denotes the different possible ways of arriving at the geeme runs over all such

terms with the same parity and symmetry (a consequence of homogeneity and hence the constraint of
incompressibility). In all that follows, we work closely with the procedure outlinef2if. Following

the convention if27] theq's to sum over arg = {1, 7, 9, 5}. The incompressibility conditiod, u* =0

coupled with homogeneity can be used to give relations between thefor a given(j, m). That s, for
j=2,m=-2...2

(2 — 2ar2m + 205 — 2az2m + () + 2a02m =0 ,

ar2m + (2 +azom + (Pas2m =0 (C.3)

We solve the above equations in order to obtaign ,, andaz 2, in terms of linear combinations af 2 ,,
andag,zmi

aron (22— &2~ 2) + ag2m (P12 + 502 + 6
o= 2@ _ o) ,
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ai,2m(2 — C(z)) —ag2m(2+ C(z))

c4
200 —2) (©4

ar.2.m =

Using the above constraints on the coefficients, we are now left with a linear combination of just two
linearly independent tensor fornfier each m

P =agonr’? -2+ (2B, &) + 22 (2 - 2B, B
+ (PP +50 +6)BY, ()]
+aronr® 2822 — 2B, () — 2@ - 2B, ()
+ (PP - - 2BY,, B (C.5)

The task remains to find the explicit form of the basis tensor functlb;r%m(r) qe{1,7,9,5}, m €
(£1, +2):

B, | (®) = r 251 Yo, (),

7 2m(r) = r=2[r*dF + rPo*1r2Y,, (),
9 2 Ly ) = 142y, (8),

BY, () = 30Fr2Y j,, ().

We obtain then = {£1, +2} basis functions in the following derivation. We first note that it is more
convenient to form a real basis from th&Ys,, () since we ultimately wish to fit to real quantities and
extract real best-fit parameters. We therefore formﬂiek(r) (k=-1,0,1) as follows:

%Y o(f) = r?Y; o(f) = rcos0 =2,

~ Yo _1(f) — Y- f
r2Y2_1(f):r2 2 1()2 2+1()

5 (COsp — i sin ¢) cosfdsingd + (cos¢ + i sin ¢) cosld sind
=r
2

=r2coslsind cos¢p = rary ,

S Yo _1(f) + Y2 11(P)
Yz 11(h) = r? o -
2 (COS¢p — i sin ¢) cosfsing — (cos¢ + i sin ¢) cosh sing
=r
—2i

=r2cosfsindsin ¢ = raro ,
~ Yo o(f) — Yo _o(f
r2Y2 ,z(f) _ r2 2 2() 5 2 —2(r)

_,2(cos2 +isin 2¢)sin? 0 — (cos 2p — i sin 2¢)sin?0
B 2i

=r?sin 2¢sin29 =2r1r ,
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~ Y2 2(f) + Y2 —2(f)
r?Yz 42(f) =r?

2
,(COS2p + i Sin 2¢) Sin?0 + (cos 2p — i sin 2¢) sin?o
=r
2
=r2cospsin?0=r? —r2. (C.6)

This new basis 0f-2Y(r) is equivalent to using theijm(r) themselves as they form a complete,
orthogonal (in the new’s) set. We omit the normalization constants for the spherical harmonics for
notational convenience. The subscriptsrodenote its components along the (2 (p) and 3 )
directionsmdenotes the shear directigrthe horizontal direction parallel to the boundary and orthogonal
to the mean wind direction andthe direction of the mean wind. This notation makes it simple to take
the derivatives when we form the different basis tensors and the only thing to remember is that

0% =0%(r - m) =m*
rg=0%(r-p)=p”
*r3=20*(r-n) =n* . (C.7)

We use the above identities to proceed to derive the basis tensor functions:
By 2 ) =r2"P @ nyrmy
By &) =r 20 mP + P n) + ¢ Py m]
By \® =2y m)
Bgﬁz (D= n*mbP + nPm*
12 (B =r725P () p)
By 1) = r 72107 pP + P (- n) + Pnf + Py p)]
B L ® =r2r Py p)
521(f) =n*pl +nf p*
By () =22 - m)(r-p)
B, o) =272 pP + P p*)(r - m) + (PmP 4 Py ()]
By, () =22 m)(r-p)
Bg, 2 o) =2m"pl + mPp)
By, 5% =r 25" [(r - m)? — (r - p)?]

B2, o) = 2210 mP + Py (- m) — (7 pP + PP p ()T
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—2 2 2
By o) =r 2Pl m)? = (rp)?]

By, 2 (0 =2(m"mP — p*pPy . (C.8)
Note that for each dimensidathe tensor is bilinear in some combination of two basis vectors from the
setm, p andn. Substituting these tensors forms into Eq. (C.5) we obtain the full tensor forms fp&tle
non-axisymmetric terms, with two independent coefficients for é&ach
S g1 = a0 1r% [P @+ () 2 m + ) )

+ (P 4Pty o)) + 202 (@ - 2r 4 P ny(r - m)

+ (PP + 5 + B)(n*mP + nPm*)]

+arz 1 (222 - 2r 257 (- m)

— 22 —2r 21w + P () + P P (- m))
+ ([C(Z) 2_ (2) 2)(n°‘mﬂ +nﬁm°‘)

S 5 a0 =ag21r% [=(2 @+ ()20 pP 4 PP py ()
+ 0P Py (- pl+ 202 () — 2r 4Py - p)
+ (PP 4502 + 6)(n*pP + 0P p*)]
+arz1r? (2022 — 2r 25 -y - p)
— 2R = 2r 210 pP + P p*y (- m) + (0P 4 P (- p)]
+ (PP -2 - 2>(n“pﬁ +nfpH1,

S o) = a9 2r -2 @+ (P ) 2 P+ rPp)(r - m)
+ *mP + rPm* (- p)] + ZC(Z)(C(Z) 2r 4 P(r - p)(r - m)
+ (PP + 52 + ) m*pP + m’ p*)]
tars or (222 — 2r 2 my(r - p)
22— 2r 21 pP + P py (- m) + (PP 4 P - p)]
+ 2([5(2’]2 (& —2)m*pP +mPp¥),

S 5 o0 = asz2r [-202 2+ (2 )r 21" m” + rPm*)(r - m)
— P P p -1+ 202 (P — 2r T Pl my? — (- p)?
+ 2([<<2)] -+ 5%+ 6)(m*mP — pf p*)]
+araor’? 202 (2 — 2r 25 - m)2 — (r - p)?]
<:(2)<<(2) 2)r2[r*mP + rPm®) (- m) — P + P p?)(r - p)]
+ 200912 = (2 = 2m*mP — pPp*)] . (C.9)
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Table C.1
The number of free coefficients in the= 2 sector for homogeneous turbulence and for different geometries
k p=n/2,0==3 ¢=0,a=p=3 ¢p=0,a=p=1 ¢p=0,0=3,=1
0+£0 0=0 0+#0 0=0 0+£0 0=0 0+£0 0=0
0 2 2 2 2 2 2 2 0
-1 0 0 1 0 1 0 2 2
1 1 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0
2 2 0 2 0 2 2 2 0
Total 5 2 5 2 5 4 6 2

Now we want to use this form to fit for the scaling expone@[ in the structure functiors33(r) from
data set | where = = 3 and the azimuthal angle ofn the geometry i®) = =/2:

$3 e a(r 0.7/2) =0,

(2
%, 11 0.7/2) = ag 217 [—202 (2 + 2) sindcost + 22 (L2 — 2)coS0sino]
S?i pke2(r 0,m/2)=0,

(2
3, 4_a(r 0.7/2) = ag.2 o2 202 (P — 2) cod 0sir? 0]

+aror? [-202 (2 — 2)sirko) . (C.10)

We see that choosing a particular geometry eliminates certain tensor contributions. In the case of set |
we are left with 3 independent coefficients ¥ar# 0, the 2 coefficients from the: = 0 contribution

(Eq. (C.2)), and the single coefficient from the isotropic sector (C.1), giving a total of 6 fit parameters.
The general forms in (C.9) can be used along withktheé (axisymmetric) contribution (C.1) to fit to any
second-order tensor object. For convenience, the table shows the number of independent coefficients tha
a few different experimental geometries we have will allow in fhe 2 sector. It must be kept in mind

that these forms are to be usedly when there is known to be homogeneity. If there is inhomogeneity,
then we cannot apply the incompressibility condition to provide constraints in the various parity and
symmetry sectors and we must in general mix different parity objects, using only the geometry of the
experiment itself to eliminate any ternmigaple C.J.

Appendix D. The j = 1 component in the inhomogeneous case

D.1. Antisymmetric contribution

We consider the tensor

T (r) = (W*(x + 1) — u* () Wl (x + 1) + u? (x))).
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This object is trivially zero for = f. In the experimental setup, we measure at points separated in the
shear direction and therefore have inhomogeneity which makes the object of mixed parity and symmetry.
We cannot apply the incompressibility condition in same parity/symmetry sectors as before to provide
constraints. We must in general use all 7 irreducible tensor forms. This would mean fitting =21

independent coefficients plus 1 exponéﬁ in the anisotropic sector, together with 2 coefficients in
the isotropic sector. In order to pare down the number of parameter we are fitting for, we look at the
antisymmetric part of *#(r)

TP (r) = T
2
which will only have contributions from the antisymmetyjie= 1 basis tensors. These are

T (r) = = W QuP (x + 1) — WP u*(x + 1))

e Antisymmetric, odd parity

B\, = r P — rPo"ry () . (D.1)

e Antisymmetric, even parity

o -2 A~
B4,ﬁl,m =r e“ﬁ“rurYl,m(r) ,

By, = r 2 rY 1 (@) . (D.2)

As with the j = 2 case we form a real basii?l,k(f) from the (in general) complexy 1 ,, (f) in order to
obtain real coefficients in the fits:

rY1—0(f) =rY10(f) =rcosf=r3,

~ Yy.1(r Y1.1(r
rY1p=1(F) =r 11(); 11() rsinfsing =ry ,

~ Y ry—Ypa1(r
rY1p=—1(F) = 1-1(f )2 11(f ) rsinfcose =ry .

And the final forms are
Bg’ﬁl’o(?) =rrtnf — rPn2y
41O(r)_r 2Py (r - ny
210(r) =r? wﬂ”
B By =r71rpf — P p
By 1By =r 2P, (- p)
Bg,ﬁl,l(f) =r%eMp,

Bg’ﬂl’_l(f) =r rtmf — rPm* |
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By () =r2 Py, (r-m)

By, (®) =r"2m, . (D.3)

Note: For a giverk the representations is symmetric about a particular axis in the coordinate system
chosen (= m (shear), 2= p (horizontal), 3= n (mean-wind)) We now have 9 independent terms and we
cannot apply incompressibility in order to reduce the number of independent coefficients in the fitting
procedure. We use the geometric constraints of the experiment to do this.

e ¢ = 0 (vertical separationy,= 3, =3
31o(r 0,6 =0)=—sin0,

211(r6¢> 0O=1,
31 _1(r,0,¢ =0) =cos0 . (D.4)

There are no contributions from the reflection-symmetric terms iry theD isotropic sector since these
are symmetric in the indices. The helicity termjia= 0 also does not contribute because of the geometry.
So, to lowest order

(GRS P (1) = az.1.00r)(—SiN 0) + az1.1(r) + az 1. _1(r) cOSO .

We have 3 unknown independent coefficients and 1 unknown exponent to fit for in the data.

D.2. Symmetric contribution

We consider the structure function
Sy = (W (x+ 1) — u*0)) Wl (x + 1) — u (x)))

in the case where we have homogeneous flow. This object is symmetric in the indices by construction,
and it is easily seen that homogeneity implies even parity §#(r) = $/*(r) and S*(—r) = S*/(r).

We reason that this object cannot exhibifj & 1 contribution from theSQ(3) representation in the
following manner. Homogeneity allows us to use the incompressibility condﬁ;dﬁﬁzo andEﬁﬁS‘“/‘zo,
separately on the basis tensors of a given parity and symmetry in order to give relationships between
their coefficients. For the even parity, symmetric case we have for geper@ljust two basis tensors

and they must occur in some linear combination with incompressibility providing a constraint between
the two coefficients. However, for = 1 we only have one such tensor in the even parity, symmetric
group. Therefore, by incompressibility, its coefficient must vanish. Consequently, we cannotjhave a
contribution for the even parity (homogeneous), symmetric structure function. Now, we consider the case
as available in experiment wherhas some component in the inhomogeneous direction. Now, it is no
longer true thas*#(r) is of even parity and moreover it is also not possible to use incompressibility as
above to exclude the existence of a 1 contribution. We must look at ajl = 1 basis tensors that are
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symmetric, but not confined to even parity. These are

e Odd parity, symmetric
By () = r o Ty
B3y () = r ol 4 P Pu(f)
91k(r) =rrrriu )
BY, () = r*dPr Pu(f) = 0 . (D.5)
e Even parity, symmetric
lﬁ k(r) =r 2[r”eﬁ‘”r 0, + P r#a‘,]rylk(r)
6’Lk(r) = [/"7,0,0, + r,0,841r Y1 (F) = 0 . (D.6)

We use the real basis of 1Y (f) which are formed from the=1Y4,, (7). Both 35 1k(r) and 36 lk(r)
vanish because of the taking of the double derivative of an object of single powevwa thus have 4
different contributions to symmetric= 1 and each of these is of 3 dimensiahs= —1, 0, 1) giving in
general 12 terms in all:

By o) =r1(r -y,
7 1 O(r) =r 1 4+ P
g/jl o)y =r" 3By o)y

B, o) = r 20 mP 4+ rPm) (- p) — (7 pP Py (- m)]

i’i (B =rPap,

;/))11“)—? repf 4+ rPpr
Bgll(f) =r=3rP(p),
Byl 1 () = r 21" m” + rPm®) () — (0P + rPu?) - m]
By 1 LB = my
B; 110 = rrmP 4 P2y
By () =r3rrP(my
By 1 LB =r2E PP+ P p) () — i P p)] (D.7)

These are all the possibje= 1 contributions to the symmetric, mixed parity (inhomogeneous) structure
function.
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Table D.1
The number of free coefficients in the symmetiie- 1 sector for inhomogeneous turbulence and for different geometries
k ¢=0,0=f=3 p=00=f=1 ¢=00=3p=1
0+£0 0=0 0+£0 0=0 0+£0 0=0

0 3 3 2 1 2 0

1 1 0 1 0 0 0
-1 2 0 3 0 2 1
Total 6 3 6 1 4 1

For the experimental setup I, we want to analyze the inhomogeneous structure function in the case

o= f =3, and azimuthal angl¢ = 0 (which corresponds to vertical separation) and we obtain the basis
tensors:

1 1 O(0) = Ccost ,

7 1 O(0) 2cosf ,

9 10(9) —cos 0,

8 1 3 1(0) = —2cosising,
Bf’?’l _1(0) =sing ,
B33 _1(0) =cos0sing . (D.8)

Table D.lgives the number of free coefficients in the symmeted sector in the fit to the inhomogeneous
structure function for various geometric configurations.

Appendix E. The matrix form of the operator of the linear pressure model
Using the basic identities of the;,, (r) functions (se¢27]),
%@ (r) =0
r0,@jm(r) = j@jm(r) ,
a short calculation yields:

ACH(r) = K*(1d,0,C*(r)

nov

¢ .
= Dx¢ |:20/1/ +22+¢) 71 -2+ +DG +2 %} By, (1)
/

x| 24422+ 0 2 +22+0 2 2240 -1 2| B2 )
X cH € . € 2 €)J\J s2 | P2jm :
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Therefore, in matrix notation, the Kraichnan operator can be written as

~(c1\ (1 0) (<] —1(1 0\(c]
%(CZ)_ZDr (O 1) (C/z/ +2D2+ e)r 0 1 C/z

B —2(G+DG+2) 0 c1
peso2(UHg D 0 ()

_ e ] -1 ] 2 c1
=rlo| L )+r K| 1) +rTKo . (E.1)
Letting

T*(r) = 11(r) By, () + 12(r) BY,,, () (E.2)

and applying a Laplacian t#7*, we get
oAy PR - ty .. noo. . . .,
07T = [—Jt2+J7+J(21 —1)7—J(J+1)r—2—J(J —1)(J+1)r—2:| Biim
1 ti . té o
+ |:l2 —7+(2_J)7i| Bij .

Hence in matrix notation,

ao(tN_ (0 —=iN(t\, 1(Ji Jj@i-D\(1
()= 7))+ (4 795)(3)
_i(j<j+1> j(j—1)<j+1>) (n)
2 0 0 12

% 1 / 1
Pz(;}/)+—ﬂj’1(t})+—2po<tl) : (E.3)
2 r tz r 1)

Now that the matrix forms of the Kraichnan operator and of the Laplacian of the projection operator have
been found, we can combine these two results to find the matrix form of the LHS of Eq. (100). To this
aim let us define

(5)=+(2)
2 c2
and from Egs. (E.1, E.3) we get
(4 (©) )
CrH (Cl> =r"Ms (%4)) +r M <C%3>> + M (%2))

@
_ & _
+ ey (k) ) et ((F)
Cy c2

where the number in parenthesis denotes the order of the derivative. The miliyiaesgiven by

Mg = PolKo

M3 = 2eP2Ko + Pol1 + P1 K> ,
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Mz = e(e — DP2Ko + 2(e — DP2IK1 + PalKg + eP1K2 + P1K1 + Pols2 ,

M1 = (e — D(e — 2)P2K1 + 2(e — 2)P2lKp + (¢ — DP1K1 + P1lKo + Polk1 ,

Mo = (¢ — 2)(e — 3)P2ko + (¢ — 2)P1Ko + PolKo - (E.4)
To find the RHS of Eq. (100) we expand the “forcing™(r) in terms of the spherical vectols ;,,,, B2,

A*() = fa(r) By}, (D) + fa(r) B3}, () (E.5)
and applying a Laplacian we find the matrix formagfA*(r):
U 2 / . . 1
Gz(fl): A+ A-0+D0+2 5N _ <p1) | (£.6)
Sf2 P2

A PR )
f2+rf2+r2fl ](] )r2f2

At this point it is worthwhile to remember that the forcing tertfi(r/L) is assumed to be analytic. As
a result forr/L <1 its leading contribution in the¢j, m) sector is proportional 6%/ Yim () ~ ri=t,
Howeverd?A*(r/L) is also analytic, and must therefore also scale #ike! for smallr, instead of like
/=3 which could be the naive dimensional guess.

To proceed we restrict ourselves to finding the solution in the inertial range and beyond. In these
ranges the dissipative tercd®02C*(r) is negligible and can be omitted, thus reaching Eq. (101)4o1)
andca(r).
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