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Abstract. We report recent results from a high resolution numerical study of
fluid particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover
time. We present some results concerning acceleration statistics and the statistics
of trapping by vortex filaments.
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Lagrangian statistics of particles advected by a turbulent velocity field, u(x, t),
are important both for their theoretical implications [1] and for applications, such
as the development of phenomenological and stochastic models for turbulent mixing
[2]. Despite recent advances in experimental techniques for measuring Lagrangian
turbulent statistics [3–6], direct numerical simulations (DNS) still offer higher accuracy
albeit at a slightly lower Reynolds number [7–9]. Here, we describe Lagrangian
statistics of velocity and acceleration in terms of the multifractal formalism. At
variance with other descriptions based on equilibrium statistics (see e.g. [10–12],
critically reviewed in [13]), this approach has the advantage of being founded on solid
phenomenological grounds. Hence, we propose a derivation of the Lagrangian statistics
directly from the Eulerian statistics.

We analyze Lagrangian data obtained from a recent Direct Numerical Simulation
(DNS) of forced homogeneous isotropic turbulence [14, 15] which was performed on
5123 and 10243 cubic lattices with Reynolds numbers up to Rλ ∼ 280. The Navier-
Stokes equations were integrated using fully de-aliased pseudo-spectral methods for
a total time T ≈ TL. Two millions of Lagrangian particles (passive tracers) were
injected into the flow once a statistically stationary velocity field had been obtained.
The positions and velocities of the particles were stored at a sampling rate of 0.07τη.
The velocity of the Lagrangian particles was calculated using linear interpolation.
Acceleration was calculated both as the derivative of the particle velocity and by
direct computation from all three forces acting on the particle (i.e. pressure gradients,
viscous forces and large scale forcing): the two measurements were found to be in very
good agreement. Finally, the flow was forced by keeping the total energy constant
in each of the first two wavenumber shells. For more details on the simulation, see
[14, 15].

1. Velocity and acceleration statistics

Velocity statistics along a particle trajectory can be measured by means of the
Lagrangian structure functions, Sp(τ) = 〈(δτv)p〉 where δτv is the Lagrangian
increment of one component of the velocity field in a time lag τ . A simple way
to link the Lagrangian velocity increment, δτv, to the Eulerian one, δru, is to consider
the velocity fluctuations along a particle trajectory as the superposition of different
contributions from eddies of all sizes. In a time-lag τ the contributions from eddies
smaller than a given scale, r, are uncorrelated, and we may write δτv ∼ δru. Assuming
that typical eddy turn over time τ at a given spatial scale r can be expressed as
τr ∼ r/δru, one obtains:

δτv ∼ δru τ ∼
Lh

0

v0
r1−h, (1)

where h is the local scaling exponent characterizing the Eulerian fluctuation in the
multifractal phenomenology [16]. Also, L0, v0 are the integral scale and the typical
velocity, respectively. With respect to the the usual multifractal phenomenology of
fully developed turbulence, the presence of a fluctuating eddy turn over time is the only
extra additional ingredient to take into account in the Lagrangian reference frame.

Using (1), one can estimate the Lagrangian velocity structure function:

Sp(τ) ∼ 〈vp
0〉

∫

h∈I

dh

(

τ

TL

)

hp+3−D(h)
1−h

, (2)
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Figure 1. ESS plot of Lagrangian velocity structure function Sp(τ) versus S2(τ).
Symbols refer to the DNS data for p = 8, 6, 4 from top to bottom. Lines have
slopes ζL(p)/ζL(2) given by the multifractal prediction (3) with a D(h) curve
taken from the She-Leveque prediction [20]. In the inset, we show the local slopes
versus time τ/τη , and their comparison with the respective multifractal prediction
(straight lines).

where the factor (τ/TL)(3−D(h))/(1−h) is the probability of observing an exponent h
in a time-lag τ , and D(h) is the dimension of the fractal set where the exponent h is
observed. The Lagrangian scaling exponents ζL(p) can be estimated by a saddle point
approximation, for τ � TL:

ζL(p) = inf
h

(

hp + 3 − D(h)

1 − h

)

. (3)

We would like to stress that for the D(h) curve we have chosen that of the Eulerian
statistics. In other words, the prediction (3) is free of any additional parameter once
the Eulerian statistics are assumed [14, 17, 18].

In Fig. (1), we present the Extended Self Similarity (ESS) [19] log-log plot
of Sp(τ) versus S2(τ) as calculated from our DNS. The logarithmic local slopes
shown in the inset display a deterioration of scaling quality for small times. We
explain this strong bottleneck for time lags, τ ∈ [τη, 10τη], in terms of trapping
events inside vortical structures [14]: a dynamical effect which may strongly affect
scaling properties and which a simple multifractal model cannot capture. For
this reason, scaling properties are recovered only using ESS and for large time
lags, τ > 10τη. In this interval a satisfactory agreement with the multifractal
prediction (3) is observed, namely from the multifractal model one can estimate
ζL(4)/ζL(2) = 1.71, ζL(6)/ζL(2) = 2.26, ζL(8)/ζL(2) = 2.72 while from our DNS we
measured ζL(4)/ζL(2) = 1.7±0.05, ζL(6)/ζL(2) = 2.2±0.07, ζL(8)/ζL(2) = 2.75±0.1.
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Figure 2. Log-linear plot of the acceleration pdf. The crosses are the DNS data,
the solid black line is the multifractal prediction and the green line is the K41
prediction. The statistical uncertainty in the pdf is quantified by assuming that
fluctuations grow proportional to the square root of the number of events. Inset:
ã4P(ã) for the DNS data (crosses) and the multifractal prediction.

A similar phenomenological argument can be used to make a prediction for the
acceleration probability density function (pdf). The acceleration can be defined as:

a ≡
δτη

v

τη
. (4)

As the Kolmogorov scale itself, η, fluctuates in the multifractal formalism: η(h, v0) ∼
(

νLh
0/v0

)1/(1+h)
, so does the Kolmogorov time scale, τη(h, v0). Using (1) and (4)

evaluated at η, we get for a given h and v0:

a(h, v0) ∼ ν
2h−1
1+h v

3
1+h

0 L
− 3h

1+h

0 . (5)

The pdf of the acceleration can be derived by integrating (5) over all h and v0, weighted
with their respective probabilities, (τη(h, v0)/TL(v0))

(3−D(h))/(1−h) and P(v0). It
remains to specify a form for the large scale velocity pdf, which we assume to be
Gaussian: P(v0) = 1/

√

2πσ2
v exp(−v2

0/2σ2
v), where σ2

v =
〈

v2
0

〉

. Integration over v0

gives:

P(a) ∼

∫

h∈I

dh a
h−5+D(h)

3 ν
7−2h−2D(h)

3 L
D(h)+h−3
0 σ−1

v ×

exp

(

−
a

2(1+h)
3 ν

2(1−2h)
3 L2h

0

2σ2
v

)

. (6)

In order to compare the DNS data with the multifractal prediction we normalize the
acceleration by the rms acceleration σa = 〈a2〉1/2 ∝ Rχ

λ. In terms of the dimensionless
acceleration, ã = a/σa, (6) becomes

P(ã) ∼

∫

h∈I

ã
(h−5+D(h))

3 R
y(h)
λ exp

(

−
1

2
ã

2(1+h)
3 R

z(h)
λ

)

dh, (7)
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Figure 3. (Left panel) Trajectories with an intense value of the acceleration have
been selected: as it can be seen, this corresponds to select tracers trapped into
vortex filaments. Arrows and colors encode the velocity (magnitude and direction)
of the particle. Rendering is realized with OpenDX. The movie (see multimedia
enhancement) shows the flow as seen by riding this particle, before and during
the trapping event. (Right panel) We show, in natural units, the behavior of one
component of the centripetal and of the longitudinal acceleration (for details see
the text). Notice the strong sign persistence of the centripetal acceleration with
respect to the longitudinal one.

where y(h) = χ(h−5+D(h))/6+2(2D(h)+2h−7)/3, z(h) = χ(1+h)/3+4(2h−1)/3
and χ = suph (2(D(h) − 4h − 1)/(1 + h)). For more details on how the numerical
integration of (6) is made we refer the reader to [15].

In Fig. (2) we compare the acceleration pdf computed from the DNS data with
the multifractal prediction (7). The large number of Lagrangian particles used in the
DNS (∼ 106) allows us to detect events up to 80σa. The accuracy of the statistics
is improved by averaging over the total duration of the simulation and all spatial
directions, since the flow is stationary and isotropic at small-scales. Also shown in
Fig. (2) is the K41 prediction for the acceleration pdf PK41(ã) ∼ ã−5/9 exp

(

−ã8/9/2
)

which can be recovered from (7) with h = 1/3, D(h) = 3 and χ = 1. As evident
from Fig. (2), the multifractal prediction (7) captures the shape of the acceleration
pdf much better than the K41 prediction. What is remarkable is that (7) agrees with
the DNS data well into the tails of the distribution – from the order of one standard
deviation σa up to order 70σa. This result is obtained using the She-Lévêque model
for the curve D(h) [20].

2. Acceleration tails and spiraling motion

This and previous work [3, 4, 14] has collected evidence which highlights the relevance
to Lagrangian turbulence of strong spiraling motions corresponding to trapping events,
i.e. passive particles trapped in small scale vortex filaments. So we identify the strong
bottleneck effect visible in Figure 1 and also the presence of extremely rare fluctuations
in the pdf of the acceleration (see Figure 2). To illustrate better these strong events,
we plot one of them in Figure 3. As is evident, the particle while moving slowly and
smoothly, at some point gets trapped in a vortex filament and starts a spiraling motion
characterized by huge values of the acceleration and by a “quasi-monochromatic”
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Figure 4. Pdf of the averaged centripetal ac (left panel), and longitudinal al

(right panel) acceleration components. The acceleration is averaged over a time
window of size ∆ = {0.1, 3, 9}τη (respectively corresponding to colors red, green
and blue).

signal on all the velocity field components. Here, we suggest a way to characterize
such events. This is of course a difficult task because not all the “trapping events” are
so clearly detectable as that shown in Figure 3.

Indeed the motion of a particle in a turbulent field will be characterized by
different accelerations and decelerations, not necessarily associated with spiraling
motion (on average the mean value of the acceleration will be zero). In a spiraling
motion the velocity v and acceleration a are orthogonal. Furthermore in a circular
uniform motion the angular velocity, ω, can be related to the centripetal acceleration
ac = ω2r and to the linear velocity v = ωr. We expect that in trapping events such
as the one depicted in Fig. (3) the centripetal acceleration is intense and much more
persistent than the longitudinal acceleration (i.e. the acceleration in the direction of
the motion). To make this statement quantitative, we have studied the average of the
centripetal, ac = a × v̂ = a × v

|v| , and longitudinal acceleration, al = (a · v̂)v̂, over a

time window which can vary up to 9τη, ∆ = {0.1, 3, 9}τη:

a
∆
c (t) ≡ 〈ac〉∆ =

1

∆

∫ t+∆

t

dt′ac(t
′); (8)

a
∆
l (t) ≡ 〈al〉∆ =

1

∆

∫ t+∆

t

dt′al(t
′). (9)

We expect that the pdfs of the averaged centripetal and longitudinal acceleration will
behave very differently with increasing the window size, ∆. In particular, the strong
persistence of the centripetal acceleration up to 10τη suggests that the centripetal pdf
P(a∆

c ) should remain almost unchanged when varying ∆, while the longitudinal one
P(a∆

l ) should become less and less intermittent. This is what we show in Fig. (4).
In order to investigate further the role of trapping in vortices, we can define a

typical radius of gyration rc and its typical eddy turnover time τc, as:

rc =
|v|2

|a × v̂|
and τc =

|v|

|a × v̂|
(10)

Notice that using a × v̂ corresponds to selecting the centripetal values of the
acceleration and hence augmenting the signal/noise ratio of spiraling motions with
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Figure 5. Pdf of the characteristic time estimated from the centripetal (in
red) and longitudinal (in green) accelerations (in units of τη) P(τc) and P(τl)
respectively, for ∆ = 0.1τη (left panel); ∆ = 3τη (central panel); ∆ = 9τη (right
panel).

respect to the background of turbulent motions. The previous expressions applied
to a typical vortex filament give rc ∼ η and τc ∼ τη. Similarly one may define a
typical time based on the “longitudinal acceleration”: τl = |v|/|(a · v̂)v̂|. Incoherent
fluctuations with typical times of the order of τη should be averaged out once we
measure the mean centripetal and longitudinal accelerations averaged over a window
with ∆ > τ in expression (10). On the other hand, the signal coming from coherent
vortex should not be affected by the averaging procedure and keeps its value: as a
consequence, we should see events with τc ∼ τη even upon averaging. Going through
Figure 5 we can observe, with increasing window size, the different behaviors of the
pdfs of the centripetal and longitudinal characteristic times, τc and τl respectively. It
is interesting to notice that the left tail of the centripetal pdf is quite robust, showing
the presence of characteristic times of the order of τc ∼ τη even after averaging over
a window with ∆ = 9τη. On the other hand the longitudinal characteristic times of
order τl ∼ τη soon disappear as long as ∆ ≥ τη. We interpret this as further evidence
of the importance of trapping in vortex filaments.

3. Conclusions

We have presented results on the Lagrangian single-particle statistics from DNS of
fully developed turbulence. In particular we have shown that (i) in the large time lag
limit, 10τη < τ < TL, velocity structure functions are well reproduced by a standard
adaptation of the Eulerian multifractal formalism to the Lagrangian framework; (ii)
the acceleration statistics are also well captured by the multifractal prediction; (iii)
for time lags of the order of the Kolmogorov time scale, τη, up to time lags 10τη, the
trapping by persistent vortex filaments may strongly affect the particle statistics. The
last statement is supported both by the scaling of the Lagrangian statistics and by a
new analysis based on the centripetal and longitudinal acceleration statistics.
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