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We introduce a model for the turbulent energy cascade aimed at studying the effect of dynamical scaling on
intermittency. In particular, we show that by slowing down the energy-transfer mechanism for fixed energy
flux, intermittency decreases and eventually disappears. This result supports the conjecture that intermittency
can be observed only if energy is flowing towards faster and faster scales of motion.
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Turbulent flows show very different behavior at changing
the embedding physical dimension. The most spectacular
change is in the reversal of the energy flux, from large to
small scales in three dimensions and viceversa in two dimen-
sions �1�. Moreover, the three-dimensional �3D� forward en-
ergy flux is strongly intermittent while the two-dimensional
�2D� inverse energy transfer is almost Gaussian �2�. The
presence of strong anomalous fluctuations in the 3D flux is
believed to be connected to the existence of a hierarchical
organization in the eddy turnover times, �r, at different
scales. Simple dimensional arguments predict the eddy turn-
over time of velocity fluctuations at scale r in the inertial
range to be of the order of �r�r2/3. For three-dimensional
turbulence, the scenario is the one of an energy cascade from
slow �large eddies� to fast �small eddies�, without the possi-
bility for fluctuations at different scales to equilibrate. This
mechanism should be at the origin of the burstlike structure
in the forward energy-transfer mechanism: any unusual fluc-
tuation in the energy content at a given scale propagates to
smaller and smaller scales until it is readsorbed by a viscous
mechanism. Hence, this is the cause of strong inhomogeneity
in the spatiotemporal statistical properties of the energy-
transfer process. The same qualitative arguments capture the
absence of intermittency in the inverse 2D process, where
energy flows from fast to slow modes, allowing the receiving
modes to feel only the mean fluctuations of the unstable
“mother” eddy. Intermittency in the related problem of scalar
passive/active quantities advected by turbulent flows has
been connected to the existence of a “dissipative anomaly,”
i.e., the presence of a nonvanishing scalar dissipation in the
limit of small molecular diffusivity. Intermittency in the lat-
ter case has a natural Lagrangian interpretation connected to
the existence of particles which separate even if starting in
coinciding points �3,4�. Such a mechanism is absent in in-
verse cascade, pointing toward the conclusion that inverse
cascade regimes cannot be intermittent. Here we intend to
investigate a similar issue on a purely Eulerian base.

Intermittent fluctuations are usually related to the scaling
properties of the Navier-Stokes equations �1�. Let us denote
by v�x , t� the velocity field of a turbulent flow satisfying the
Navier-Stokes equations

�tv + v · � v = − � � + ��v + f , �1�

where �= p /� �p being the pressure and � the density�, � is
the kinematic viscosity of the flow, and f is the �large scale�

external forcing. Equation �1� shows the remarkable property
to be invariant under the scale transformation

x → �x, v → �hv, t → �1−ht, � → �1+h� . �2�

Note that �2� implies for the energy dissipation: �→�3h−1�,
i.e., � is constant if h=1/3 as predicted by the K41 theory. In
the multifractal theory of turbulent flows, h is supposed to be
a fluctuating quantity, although on the average the rate of
energy dissipation is constant �1�. The above scenario is
complemented by the assumption that the statistical fluctua-
tions are described by a scaling-invariant probability distri-
bution Ph��3−D�h�, where D�h� can be interpreted as the
fractal dimension related to the fluctuations �h. Regardless of
the geometrical interpretation of D�h�, the basic physical
questions are which is the mechanism determining the fluc-
tuations of h and why are there fluctuations in the energy
flux. The above, scale-invariant, scenario of the nonequilib-
rium statistical properties of turbulent flows suggests a
simple although not trivial picture of intermittency, related to
the energy cascade mechanism. At scale r, the amount of
kinetic energy due to turbulent fluctuations can be estimated
as �	rv�2, where 	rv=v�x+r�−v�x�, and where we neglect
vectorial indexes for simplicity. We expect that the rate of
energy flux at scale r, denoted by �r, is of the order of
�	rv�2 /�r. Because energy transfer is due to nonlinear inter-
actions, �r can be estimated as r /	rv. Thus we obtain
�	rv�3�r�r which, as expected, is invariant under �2�. As a
result, the energy-transfer statistics are strongly correlated to
the fluctuations on the energy contents at different scales,
�	rv�2, and to their dynamical properties, �r. Moreover, the
presence of strong intermittent fluctuations in the energy
contents at different scales, reflects, via the equation of mo-
tions, into nontrivial fluctuations of the local eddy turnover
times. Indeed, previous theoretical and numerical works have
demonstrated that spatial and temporal properties of the en-
ergy cascade mechanism are strongly correlated �5,6�.

The previous phenomenological arguments suggest that
intermittency can be observed only if energy is flowing to-
wards faster scales of motion. It is therefore tempting to
argue that by decreasing the scaling exponents of the eddy
turnover times along the cascade, i.e., by slowing down the
energy-transfer mechanism for fixed energy flux, intermit-
tency should decrease and eventually disappear. Our aim in
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this paper is to provide clear evidence that the above conjec-
ture holds.

We investigate the case of a shell model of turbulence
�see �1,7,8� and references therein�, where the time needed to
transfer a fluctuation from a scale R to a scale r with r
R is
given by the estimate: �R,r�Rx−1/3−rx−1/3, where the usual
case of K41 turbulence is described by x=2/3. We will show
that in the limit x→1/3, i.e., when the eddy turnover times
at different scales become of the same order, the energy
transfer becomes less and less intermittent. This finding sup-
ports the idea that intermittency is generated by the impos-
sibility for fluctuations at a given scale to be reabsorbed be-
fore being transferred down scale.

The motivation to use shell models as a possible surrogate
of the Navier-Stokes dynamics is twofold. First, shell models
proved to be very successful in reproducing many of the
statistical features of both 2D and 3D turbulent flows, being
at the same time much easier to simulate numerically. Sec-
ond, they are flexible enough to allow a structural change in
their equations of motion which will allow us to directly
probe the importance of time dynamics in fixing the inter-
mittent properties of the energy-transfer process �see below�.
Moreover, shell models describe the evolution of turbulent
flows in a Lagrangian or quasi-Lagrangian reference frame,
i.e., where sweeping of small scales by large scales are ab-
sent �9,10�. This allows us to study the true “built-in” dy-
namical properties of the energy cascade without the over-
whelming effects induced by the large scale flow.

In a shell model, the basic variable describing the “veloc-
ity field” at scale rn=�−nr0�kn

−1, is a complex number un
satisfying a suitable set of nonlinear equations. There are
many versions of shell models that have been introduced in
literature �see �8� for a recent review�. Here we choose the
one proposed in �11�, which is an improved version of the
so-called GOY model �12,13�

dun

dt
= ikn��un+1

* un+2 + bun−1
* un+1 − c�−1un−2un−1�

− �kn
2un + fn, �3�

where �=2, c=−�1+b�, and fn is an external forcing. In
shell models, we can associate 	rv with un. Clearly Eq. �3�
satisfies the scaling �2�. The important point on shell models
like �3� is that the statistical properties of intermittent fluc-
tuations, computed either using un or the instantaneous rate
of energy dissipation, are in close qualitative and quantita-
tive agreement with those measured in laboratory experi-
ments, for homogeneous and isotropic turbulence. Thus,
shell models provide a useful tool to investigate in a simple
way the physical consequences of scaling �2� and intermit-
tency. Moreover, at variance from 3D Navier-Stokes equa-
tions, the computational complexity grows with Reynolds
only as Re1/2, allowing for reliable numerical studies also at
very high Reynolds numbers.

It is easy to realize that also in shell models, ��kn� goes as
kn

h−1 as predicted by �2�, i.e., the characteristic time for en-
ergy transfer decreases quite fast as the scale kn

−1 is decreas-
ing. If ��kn� is independent of kn, the constant-flux argument
would suggest energy equipartition among all scales, i.e.,

�	rv�2��r. To be more specific, by constraining ourselves on
shell models, let us modify �3� in such a way that there still
exists an average Reynolds independent rate of energy dissi-
pation �= ���nkn

2	un	2
 while the statistical properties are in-
variant under the scaling transformation

kn → �−1kn, un → �hun, t → �x−ht, � → �1+h� , �4�

where x is a fixed parameter in the equations. Note that for
Eq. �4� to hold, we should require that the nonlinear terms
scale as �2h−x. Note also that �����v�2��3h−1, thus we do
not change the constrain on the energy flux.

In order to satisfy the scaling �4�, we introduce the fol-
lowing equations:

dun

dt
= ik0

1−xkn
x�2un+1

* un+2 + bun−1
* un+1 +

1 + b

2
un−2un−1�

− �kn
1+xk0

1−xun + fn, �5�

where k0 is the largest scale in the system. Clearly, we obtain
the old shell model for x=1, while a direct inspection of �5�
shows that �4� is satisfied for any x. Moreover, for �=0, the
generalized energy, Q=k0

x−1nkn
1−x	un	2, is conserved by non-

linear interactions. Thus, in a statistically stationary regime
we have the “energy” budget

1

2

dQ

dt
= 0 = P − ��

n

kn
2	un	2,

where P�Re���nkn
1−xun

*fn
� is the energy input. Note that in
this shell model energy fluctuations at scale kn are of the
order Qn=k0

x−1kn
1−x	un	2 while the eddy turnover time for the

energy transfer is of the order

��kn� � 1/�k0
1−xkn

xun� . �6�

Thus the energy flux through wave number kn can be proved
rigorously to be of the order of �n=kn	un	3 as for the original
shell model. Therefore, for all x, by keeping ��n
=const we
can achieve a constant energy flux,

�	un	3
 � kn
−1. �7�

In summary, we want to stress that for all x the shell model
�5� reproduces the same average energy flux and maintains
the same relative weights between the nonlinear terms ap-
pearing in the right-hand side of �5�. The only aspect that
changes is the dynamical efficiency in transferring energy
between shells. In particular, for small x, say x�1/3, by
combining �6� and �7� we should expect all eddy turnover
times to be of the same order in the inertial range and there-
fore the energy to reach a quasiequipartition state for fixed
value of �. The shell model provides us with the interesting
possibility to study intermittency as a function of x, i.e., as a
function of the dynamical scaling �4� and �6�. Intuitively, one
can imagine that decreasing x from its Navier-Stokes value
x=1 induces a smoother and smoother energy-transfer pro-
cess towards smaller scales, fluctuations among different
scales tend to equilibrate each other and, consequently, non-
Gaussian fluctuations are depleted. Thus, as a function of x
the shell model �5� should exhibit a kind of phase transition
from “strong” intermittent fluctuations at x=1 to Gaussian
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nonintermittent fluctuations at x small. In this paper we sup-
port the above conjecture by numerical simulations of the
model �5�. Moreover, we will give a theoretical argument to
estimate the value of xc below which intermittency starts to
be depleted.

In order to keep � constant, regardless of the value of �
and x, we use the forcing fn=An /un

* for n=1,2 and fn=0 for
n�2. We have performed a series of numerical simulations
for different values of x, keeping the parameter b=−0.4
fixed. As a measure of intermittency, we compute the gener-
alized kurtosis G2p�kn�= �	un	2p
 / �	un	2
p. All generalized kur-
tosis possess scaling properties, G2p�kn��kn

−��2p�+p��2�, where
the ��p� are the scaling exponents of the pth-order structure
functions. The absence of intermittency, ��2p�= p��2�, im-
plies that all generalized kurtosis become independent of kn
and equal to their large-scale quasi-Gaussian behavior. Fig-
ure 1 shows the value of G4�kn� for different values of kn as
a function of x, while in the inset we show the same but for
G6�kn�. As one can clearly see, for x smaller than 0.5 a sharp
decrease of G4 and G6 is observed. For small values of x
both G4 and G6 become equal to their Gaussian value. The
above results tell us that intermittency is depleted for small x
in agreement with our intuitive argument. Also, within the
numerical error bars, for x�xc�0.5, intermittent fluctua-
tions seem to weakly depend on x.

We want now to understand why the transition to no-
intermittency fluctuations is observed for relatively large
value of x, namely for x�0.4. As we shall see in the follow-
ing, xc=1/3+�x, where �x is due to intermittency correc-
tion. The argument goes as follows. Let us consider two
scales, kn and kn+m. The corresponding times for the energy

transfer are ��kn��kn
h�−x and ��kn+m��kn+m

h−x , where h and h�

are the values of the “local” fluctuations of un�kn
−h� and

un+m�kn+m
−h , respectively. For x=1 the probability that the

ratio �m=��kn+m� /��kn� is larger than 1 is extremely small,
already for m=1,2. When x becomes smaller than 1 the
probability P��m�1� starts growing, even for small m. If �m

is much larger than 1, then the energy transfer from scale kn
to scale kn+m is stopped and energy tends to a quasiequipar-
tition state. In order to estimate xc, let us compare, for a
given kn, the ratio between two eddy turnover times Tm�q�
= ���m�q
, in the limit of large-scale separation,

Tm�q� � � dhkm
�qh−qx−3−D�h��� � km

�−qx−��−q��,

��q� = inf
h

�qh + 3 − D�h�� , �8�

where the result is obtained in the saddle-point limit km
→� by considering the fluctuations at scale kn and kn+m al-
most uncorrelated �random multiplicative cascade�.

The above expression tells us that Tm�q� becomes larger
and larger, for km→�, when x
xc�q�=−��−q� /q. Let us
note that, because of convexity properties of ��q�, xc�q� is an
increasing function of q. Thus, there is not a single value of
x below which intermittency is depleted, rather the transition
to quasi-Gaussianity is continuous; different moments of the
eddy turnover ratios behave in slightly different way. As a
simple guideline the transition region is �xc�1� ,xc�2��
= �0.4,0.42�, estimated by using the D�h� curve which fits
the ��q� exponents as given by the She-Leveque formula
�14�. A direct numerical investigation gives further support to
our previous argument. In Fig. 2 we show the probability
density function of the ratio ��k14� /��k13�, with ��kn� being
the instantaneous eddy turnover time at shell kn. For x=1, we
expect that ��k14�
��k13� with probability close to 1, while,
according to our estimate, we expect that for x=0.5 ��k14�
���k13� and intermittency is depleted. This is clearly shown
in Fig. 2, where in the inset we also show the probability
density function of ln���k17� /��k13��. Hence, we can con-

FIG. 1. The value of G2p�kn�= �	un	2p
 / �	un	2
p for p=2 and p
=3 �in the inset� as a function of x and for two different values of
kn, namely n=10 �boxes� and n=15 �circles�. The predicted value
for the Gaussian statistics �horizontal dotted line� is reported for
comparison.

FIG. 2. Probability distribution of ln���k14� /��k13�� for two dif-
ferent values of x, namely x=1 and x=0.5. The theory presented in
the paper predicts that intermittency is depleted at x=0.5 because
��kn+1����kn�. In the inset we show the probability distribution of
ln���k17� /��k13��.
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clude that for all scales kn the eddy turnover times become
almost equal producing a quasi-Gaussian distribution in the
generalized energy.

As a further check of our argument, we consider the shell
model �5� for b=−0.8. In this case, the model at x=1 shows
larger intermittent correction with respect to the case b
=−0.4 previously considered. According to our argument for
the transition to occur, we should expect that for b=−0.8,
depletion of intermittency takes place for larger values of x,
which is indeed the case as shown in Fig. 3.

In summary, we have presented the following main re-
sults: �i� we introduced a new version of the shell model
which satisfies a generalization of the dynamical scaling �4�;
�ii� we have proposed a simple, although nontrivial, argu-
ment for understanding how intermittency can depend on the
scaling properties of the eddy turnover time; �iii� we have
shown, by numerical simulations, that our argument is cor-
rect; �iv� we have provided a multifractal estimate of the
critical value, xc, where intermittency should disappear.

This study can be considered a natural extension of a
series of previous works meant to stress the importance of
temporal correlation in determining the spatial anomalous
fluctuation in turbulent flows and turbulent models �15,16�
�see also �5� for similar consideration for Navier-Stokes
equations.�
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work.
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FIG. 3. Same quantities as in Fig. 1 for the model with param-
eter b=−0.8 with n=10 �boxes�, n=15 �circles� in the main figure,
and n=5 �boxes�, n=9 �circles� in the inset. The increase of inter-
mittency at x=1 increases the critical value of x for which a quasi-
Gaussian distribution is attained.
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