Energy and Information Transfer Mechanisms in Turbulence

ARAKI Ryo: Tokyo University of Science

Introduction

Self introduction

荒木亮 (ARAKI, Ryo), born in Kyoto prefecture, Japan

Career

- Until 03/2020: Bachelor & Master @Osaka University
 - Supervisor: Prof. Susumu Goto
- Until 09/2023: PhD @École Centrale de Lyon 1 & Osaka Univ.
 - Supervisors: Dr. Wouter Bos and Prof. Susumu Goto
 - ► Thesis: "Temporal and Spatial Features of the Turbulent Kinetic Energy Cascade"
- Since 10/2023: Fixed-term Assistant Professor @Tokyo Univ. of Science
 - In Prof. Takahiro Tsukahara's lab
 - Looking for a next position!

Today, I want to discuss ... Part I

• Q. How do different **physical mechanisms** contribute to energy and information transfer in the inertial range of 3D turbulence?

Part II

• Q. What can we **universally** say about the nature of the information flow in turbulence in terms of nonequilibrium statistical mechanics?

Part III

• Ideas for future research & possible collaborations: Q. What is the universal bound on the finite-time predictability?

Collaborators

Adrián Lozano-DuránAlberto Vela-MartínTomohiro Tanogami@Caltech, USA@UP3M, Spain@Osaka U., Japan

Will attend StatPhys29 held in Firenze, July 13–18.

Physical Mechanisms of Energy/Information Transfer

Turbulence and its statistical universality

[...] big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity [...]. Richardson (1922)

Causality and "forgetful" in energy cascade Small scales "forget" about large scales [The small scales] do not retain any information which relates to their great-

great-great-grand parents. Davidson (2013)

Small scales are determined by large scales

"Twin" turbulent simulations with the same large scales exhibit synchronised small scales. Vela-Martín (2021)

Q.1 Can we reconcile this paradox?

Brief introduction of information theory Shannon entropy

$$H(X) \coloneqq \int \mathrm{d}x \, p(x) [-\ln p(x)]$$

- Information of an event $x \in X$ is quantified by $-\ln p(x)$.
- H(X) quantifies "average uncertainty" of a random variable X.

Quantities to quantify correlation and causality

- Mutual information $I[X:Y] \coloneqq \int dx \, p(x) \ln[p(x,y)/p(x)p(y)]$
- Transfer entropy $T_{X \to Y} \coloneqq H\left(Y_{t+1} \mid \mathbf{Y}_{t}^{(k)}\right) H\left(Y_{t+1}\right) \mid \mathbf{X}_{t}^{(l)}, \mathbf{Y}_{t}^{(k)}$ where $\mathbf{X}_{t}^{(l)} \coloneqq (X_{t}, X_{t-1}, ..., X_{t-k+1})$
- Information flow $\dot{I}^X \coloneqq \lim_{\mathrm{d}t \searrow 0} \frac{1}{\mathrm{d}t} (I[X_{t+\mathrm{d}t} : Y_t] I[X_t : Y_t])$

Information flux

Discrete dynamical system

- Variable $\boldsymbol{Y} = [Y_1, Y_2, ..., Y_N]$
- Time evolution $Y_j^{n+1} = f_j(\mathbf{Y}^n)$

Information flux

Uncertainty to observe Y_j^{n+1} is • $H(Y_i^{n+1} | Y^n)$ when Y^n is known

•
$$H(Y_j^{n+1} \mid Y_i^n)$$
 when Y_i^n is known

$$T_{i \to j}^{Y} \coloneqq H\left(Y_{j}^{n+1} \mid \mathbf{Y}_{i}^{n}\right) - H\left(Y_{j}^{n+1} \mid \mathbf{Y}^{n}\right)$$

quantifies decrease of uncertainty to

observe Y_j^{n+1} by newly knowing Y_i^n .

Causality in energy flux time series

$$\varPi \coloneqq -\mathring{\tau}_\ell \big(u_i, u_j \big) \bar{S}_{ij}^\ell$$

- Coarse-grained velocity field $\bar{u}_i^\ell(\boldsymbol{x}) \coloneqq \iiint_{-\infty}^\infty G_\ell(\boldsymbol{x}) u_i(\boldsymbol{x}+\boldsymbol{r}) \,\mathrm{d}\boldsymbol{r}$
- Gaussian filter $G_\ell({m x})\coloneqq \mathcal{N}\expig(-|{m r}|^2/2\ell^2ig)$
- Reynolds stress $\tau_\ell \big(u_i, u_j \big) \coloneqq \overline{u_i u_j}^\ell \bar{u}_i^\ell \bar{u}_j^\ell$
- Strain rate $\bar{S}_{ij}^{\ell} \coloneqq \left[\partial_j \bar{u}_i^{\ell} + \partial_i \bar{u}_j^{\ell}\right]/2$ where non-diagonal part $\mathring{\tau}_{ij} \coloneqq \tau_{ij} \delta_{ij} \tau_{kk}/3$

Causality in energy flux time series

Summary 1 Information flux captures the forward scale-local causality, which two-time correlation function cannot.

Lozano-Durán & Arranz (2022)

Overview of my approach

Turbulence dataset

- Time-resolved HIT @UPM
- Taylor-scale $\operatorname{Re}_{\lambda} = 315$
- Resolution $N^3 = 1024^3$
- Length $T_{\rm sim}/T_0 = 66$
- * # of sample: $N_{\text{sample}} = \mathcal{O}(10^3)$
- Linear forcing at low k

Cardesa et al. (2017)

Lagrangian tracking of space-local energy flux

- 1. Compute space-local average of energy flux at x.
- 2. Advect $x \to x + \Delta x$ & compute the same quantity at smaller scale.
- 3. Repeat 1-2 to construct the Lagrangian dataset.

Scale-local information flux

Summary 2 Lagrangian dataset captures the scale-local information flux without the self-induced ones.

Physical mechanisms of energy cascade

Q.2 What is the physical mechanism of the information flow?

Note: *The* physical mechanism of the cascade is still an open question.

Decomposed energy flux

$$\begin{split} \Pi &:= -\mathring{\tau}_{\ell} \big(u_i, u_j \big) \bar{S}_{ij}^{\ell} \\ &= \underbrace{\Pi_{s1}^{\ell}}_{\ell} + \underbrace{\Pi_{\omega1}^{\ell}}_{\ell} + \underbrace{\Pi_{s2}^{\ell}}_{\ell} + \underbrace{\Pi_{\omega2}^{\ell}}_{\ell} + \underbrace{\Pi_{c}^{\ell}}_{c} \end{split}$$

Scale-local SSA

$$\Pi^{\ell}_{s1} \coloneqq -\ell^2 \bar{S}^{\ell}_{ij} \bar{S}^{\ell}_{jk} \bar{S}^{\ell}_{ki}$$

Scale-local VS

$$\Pi^{\ell}_{\omega 1} \coloneqq \ell^2 \bar{\omega}^{\ell}_i \bar{S}^{\ell}_{ij} \bar{\omega}^{\ell}_j / 4$$

Summary 3 $\Pi_{s1}^{\ell} > \Pi_{\omega1}^{\ell}$: SSA transfers more energy to smaller scales than VS in the inertial range. Johnson (2021)

Decomposed energy flux

• Scale-nonlocal SSA

$$\Pi_{s2}^{\ell} \coloneqq -\int_{0}^{\ell^{2}} \mathrm{d}\alpha \, \bar{S}_{ij}^{\ell} \tau_{\beta} \Big(\bar{S}_{jk}^{\sqrt{\alpha}}, \bar{S}_{ki}^{\sqrt{\alpha}} \Big)$$

• Scale-nonlocal VS

$$\Pi_{\omega 2}^{\ell} \coloneqq -\frac{1}{4} \int_{0}^{\ell^{2}} \mathrm{d}\alpha \, \bar{S}_{ij}^{\ell} \tau_{\beta} \Big(\bar{\omega}_{i}^{\sqrt{\alpha}}, \bar{\omega}_{j}^{\sqrt{\alpha}} \Big)$$

Summary 4
$$\Pi_{s2}^{\ell} = \Pi_{\omega2}^{\ell}$$
: Nontrivial relation in nonlocal terms.

$$\beta \coloneqq \sqrt{\ell^2 - \alpha}, \, \omega_i \coloneqq \epsilon_{ijk} \partial_j u_k, \, \Omega_{ij} \coloneqq \left[\partial_j u_i - \partial_i u_j \right]/2$$

§ Physical Mechanisms of Energy/Information Transfer

Johnson (2021)

Information flux associated with different mechanisms

Discrepancy between energetic and causal mechanisms

Summary 6 The most energetic mechanism \neq the most causal mechanism (and vice versa)

Estimation method dependency

Synthetic-Unique-Redundant Decomposition (SURD)

Martínez-Sánchez et al. (2024)

Consider decomposing information flux from $Q_i(t)$ to $Q_i(t + \Delta t)$:

$$H(Q_{j}(t + \Delta t)) = \sum_{i \in \mathcal{C}} \Delta I_{i \to j}^{R} + \sum_{i=1}^{N} \Delta I_{i \to j}^{U} + \sum_{i \in \mathcal{C}} \Delta I_{i \to j}^{S} + \Delta I_{\text{leak} \to j}$$

$$\begin{array}{c|c} \text{Redundant} & \text{Unique} \\ \hline Q_{3} & \Delta I^{R} \\ \hline Q_{3} & Q_{1} \\ \hline Q_{2} & Q_{2} \equiv Q_{3} \end{array} \qquad \begin{array}{c|c} \text{Unique} & \text{Synthetic} \\ \hline Q_{3} & \Delta I^{S} \\ \hline Q_{2} & Q_{1} \\ \hline Q_{2} & Q_{1} \end{array} \qquad \begin{array}{c|c} \text{Synthetic} & \text{Leak} \\ \hline Q_{3} & \Delta I^{S} \\ \hline Q_{2} & Q_{1} \\ \hline Q_{2} & Q_{1} \end{array} \qquad \begin{array}{c|c} \text{Q}_{2} & \Delta I^{S} \\ \hline Q_{2} & Q_{1} \\ \hline Q_{2} & Q_{1} \end{array} \qquad \begin{array}{c|c} \text{Synthetic} \\ \hline Q_{3} & \Delta I^{S} \\ \hline Q_{2} & Q_{1} \\ \hline Q_{2} & Q_{1} \end{array} \qquad \begin{array}{c|c} \text{Leak} \\ \hline Q_{I} \\ \hline Q_{2} & Q_{1} \\ \hline Unobserved var. \end{array}$$

Results to be presented at EFDC2 @Dublin!

Information-Thermodynamic Nature of Information Flow in Turbulence

Stochastic thermodynamics (ST)

Thermodynamics for microscopic systems with thermal fluctuations

• (Underdamped) Langevin equation

$$\ddot{x} = -\frac{\gamma}{m}\dot{x} + F(x,t) + \sqrt{2\gamma T} \ \xi(t)$$
Thermality
Fluctuation-dissipation relation

p: probability, F(x,t): External force, $\xi(t)$: Noise

Tanogami et al. (2023)

 γ : Friction coefficient, m: Mass, T: Temperature

Second law of ST

System's entropy change
$$\frac{\mathrm{d}S}{\mathrm{d}t} + \dot{S}_{\mathrm{env}} \geq 0$$

Environment's entropy change

References

• Peliti & Pigolotti (2021)

April 15, 2025

• Shiraishi (2023)

\$env

Thermal bath

• Tasaki (2023)

23 / 42

Information thermodynamics (ITD)

Thermodynamics for microscopic subsystems with information exchange

Example: Maxwell's demon

- Can reduce entropy → Violate the second law of thermodynamics
- Demon has to measure & feedback
 - \rightarrow Satisfy the second law of ITD

Fluctuating Navier-Stokes equations (FNS eqs)

Explicitly taking thermal fluctuations into account

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = -\frac{1}{\rho}\boldsymbol{\nabla}p + \nu\nabla^2\boldsymbol{u} + \boldsymbol{f} + \boldsymbol{\nabla} \cdot \boldsymbol{s}$$

In Fourier space,

$$\frac{\partial \hat{\boldsymbol{u}}_{\boldsymbol{k}}}{\partial t} = \boldsymbol{B}_{\boldsymbol{k}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) - \nu k^2 \hat{\boldsymbol{u}}_{\boldsymbol{k}} + \hat{\boldsymbol{f}}_{\boldsymbol{k}} + \sqrt{\frac{2\nu k^2 k_{\mathrm{B}} T}{\rho}} \hat{\boldsymbol{\xi}}_{\boldsymbol{k}}.$$

- * \hat{u}_k : Fourier-space velocity at mode k
 - k locity at mode k
- ν : Kinematic viscosity

T: Temperature *k*_B: Boltzmann constant

- ρ : Mass density
- $B^a_{k}(\hat{u}, \hat{u}^*) \coloneqq -\mathrm{i}k^c \left(\delta^{ab} \frac{k^a k^b}{k^2}\right) \sum_{p+q=k} \hat{u}^b_p \hat{u}^c_q$: Nonlinear term

April 15, 2025

25 / 42

Recent findings on the importance of thermal noise

Thermal fluctuations

- dominate the far dissipation range with energy equipartition (Bandak et al. 2022)
- are amplified to the largest scales in finite time (Bandak et al. 2024)
- inhibit intermittency in compressible turbulence (Srivastava et al. 2025)

Summary 7 Thermal fluctuations impact dynamics and statistics of turbulence.

Information flow from large- to small-scale velocities

Divide full velocity field $\{ \hat{u}, \hat{u}^* \}$ into $\{ \hat{u}, \hat{u}^* \} = U_K^< \cup U_K^>$

- Large scale modes $oldsymbol{U}^<_K$ for $|oldsymbol{k}| \leq K$
- * Small scale modes $oldsymbol{U}_K^>$ for $|oldsymbol{k}|>K$

$$\text{Mutual information } I[\boldsymbol{U}_{K}^{<}, \boldsymbol{U}_{K}^{>}] \coloneqq \left\langle \ln \frac{p_{t}(\boldsymbol{U}_{K}^{<}, \boldsymbol{U}_{K}^{>})}{p_{t}^{<}(\boldsymbol{U}_{K}^{<})p_{t}^{>}(\boldsymbol{U}_{K}^{>})} \right\rangle$$

Information flow

$$\dot{I}_K^> \coloneqq \lim_{\mathrm{d}t \searrow 0} \frac{I[\boldsymbol{U}_K^<(t): \boldsymbol{U}_K^>(t + \mathrm{d}t)] - I[\boldsymbol{U}_K^<(t): \boldsymbol{U}_K^>(t)]}{\mathrm{d}t}$$

When $\dot{I}_{K}^{>} > 0$, small scales gain information about large scales.

Information-thermodynamic bound of information flow

- In (nonequilibrium) steady state
- For wavenumber K in the inertial range

Information flow is bounded by

$$\frac{\rho V \varepsilon}{k_{\rm B} T} \ge \dot{I}_K^> \ge 0.$$
Environment's entropy change

Summary 8 Positive (macro \rightarrow micro) information flow, bounded by the second law of ITD, exists in turbulence. (Tanogami & Araki 2024a)

V: Volume of fluid, ε : energy dissipation rate

Sketch of the proof: Information flow

1. Consider the Fokker-Planck equation corresponding to FNS eqs.

$$\begin{split} \frac{\partial}{\partial t} p_t(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) &= \sum_{\boldsymbol{k} \in \mathcal{K}^+} \left[-\frac{\partial}{\partial \hat{\boldsymbol{u}}} \cdot \boldsymbol{J}_{\boldsymbol{k}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) - \text{c.c.} \right] \\ \boldsymbol{J}_{\boldsymbol{k}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) &= \left[\boldsymbol{B}_{\boldsymbol{k}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) - \nu k^2 \hat{\boldsymbol{u}}_{\boldsymbol{k}} + \hat{\boldsymbol{f}}_{\boldsymbol{k}} \right] p_t(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) \\ &- \frac{1}{V} \frac{\nu k^2 k_{\text{B}} T}{\rho} \left(I - \frac{\boldsymbol{k} \boldsymbol{k}}{k^2} \right) \cdot \frac{\partial}{\partial \hat{\boldsymbol{u}}^*} p_t(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) \end{split}$$

 \mathcal{K}^+ : Set of independent Fourier modes, $m{B}_{m{k}}(\hat{m{u}},\hat{m{u}}^*)$: Nonlinear term for mode $m{k}$

2. Define system's Shannon entropy

$$S[\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*] \coloneqq -\int \mathrm{d}\hat{\boldsymbol{u}} \, \mathrm{d}\hat{\boldsymbol{u}}^* \, p_t(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*) \ln p_t(\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*)$$

Sketch of the proof: Information flow

3. Define environment's entropy change (due to viscous & thermal noise)

$$\dot{S}^{\text{env}} \coloneqq \sum_{\boldsymbol{k}} \frac{\rho V}{2k_{\text{B}}T} \left\langle \hat{\boldsymbol{u}}^* \circ \left[\nu k^2 \hat{\boldsymbol{u}}_{\boldsymbol{k}}^* - \sqrt{\frac{2\nu k^2 k_{\text{B}}T}{\rho}} \hat{\boldsymbol{\xi}}_{\boldsymbol{k}} \right] + \text{c.c.} \right\rangle$$

4. Show the second law of stochastic thermodynamics

$$\dot{\sigma} \coloneqq \frac{\mathrm{d}}{\mathrm{d}t} S[\hat{\boldsymbol{u}}, \hat{\boldsymbol{u}}^*] + \dot{S}^{\mathrm{env}} \ge 0$$

5. Derive the second law of information thermodynamics

$$\sum_{\boldsymbol{k}\in\mathcal{K}^+,k>K} \dot{\sigma}_{\boldsymbol{k}} = \frac{\mathrm{d}}{\mathrm{d}t} S[\boldsymbol{U}_K^>] + \dot{S}_{\mathrm{env}}^> \ge \dot{I}_K^>$$

where $d_t S[U_K^>] = 0$ (NESS) & $\dot{S}_{env}^> \to \rho V \varepsilon / k_{\rm B} T$ as $K/k_{\nu} \to 0$.

Fluctuating Sabra shell model (FSS model)

One-dimensional caricature of the fluctuating NS eqs.

$$\frac{\partial u_n}{\partial t} = B_n(u, u^*) - \nu k_n^2 u_n + f_n + \sqrt{\frac{2\nu k^2 k_{\rm B} T}{\rho}} \xi_k,$$

$$B_n(u, u^*) = \mathbf{i} \left(k_{n+1} u_{n+2} u_{n+1}^* - \frac{1}{2} k_n u_{n+1} u_{n-1}^* + \frac{1}{2} k_{n-1} u_{n-1} u_{n-2} \right)$$

- u_n : 1D "velocity" at wavenumber k_n
- u_n^* : complex conjugate of u_n
- $k_n = k_0 2^n$: wavenumber

Information flow and turbulence fluctuations

For FSS model,

Assumption

PDF of the Kolmogorov multiplier

$$z_n \coloneqq |u_n/u_{n-1}| \mathrm{e}^{\mathrm{i}\Delta_n}$$

is universal and independent of n.

$$\Delta_n \coloneqq \arg u_n - \arg u_{n-1} - \arg u_{n-2}$$

Statement

$$\dot{I}_{K}^{>} \leq C_{p} K \left\langle \left| u_{n_{K}} \right|^{p} \right\rangle^{\frac{1}{p}} \text{ for } p \geq 1$$

where C_p is a universal constant.

Summary 9 Information flow is bounded by turbulence fluctuations.

(Tanogami & Araki 2024b)

Sketch of the proof: Information flow & velocity fluctuations

1. Consider the Fokker-Planck equation corresponding to the large-

scale modes ${\pmb U}_K^<\coloneqq \{u_n,u_n^*\mid 0\leq n\leq n_K\}$ of the FSS model

$$\begin{split} \frac{\partial}{\partial t} p_t(\boldsymbol{U}_K^<) &= \sum_{n=0}^N \bigg[-\frac{\partial}{\partial u_n} \overline{J}_n(\boldsymbol{U}_K^<) - \text{c.c.} \bigg], \\ \overline{J}_n(\boldsymbol{U}_K^<) &\coloneqq \big[\overline{B}_n(\boldsymbol{U}_K^<) + f_n \big] p_t(\boldsymbol{U}_K^<), \\ &- \int d \boldsymbol{U}_K^< \big] \end{split}$$

$$\overline{B}_n(\boldsymbol{U}_K^{<}) \coloneqq \int \mathrm{d}\boldsymbol{U}_K^{>} B_n(u, u^*) p_t(\boldsymbol{U}_K^{>} | \boldsymbol{U}_K^{<}).$$

2. Impose assumption: PDF of the Kolmogorov multiplier

$$z_n \coloneqq |u_n/u_{n-1}| \mathrm{e}^{\mathrm{i}\Delta_n}$$

is universal and independent of $n \to \mathsf{FP}$ eq. is closed with $U_K^<$.

Sketch of the proof: Information flow & velocity fluctuations

3. Show the equivalence between scale-to-scale information flow $\dot{I}_{K}^{>}$ and phase-space contraction rate

$$\dot{I}_{K}^{>} = - \left\langle \sum_{n=0}^{n_{K}} \left(\frac{\partial}{\partial u_{n}} \overline{B}_{n}(\boldsymbol{U}_{K}^{<}) \right) + \text{c.c.} \right\rangle \text{ for } k_{f} \ll K \ll k_{\nu}.$$

- 4. Show that $\dot{I}_{K}^{>}$ is upper bounded by the velocity structure function $\dot{I}_{K}^{>} \leq C_{p} K \left\langle \left| u_{n_{K}} \right|^{p} \right\rangle^{1/p}$ for $p \geq 1$ by using
 - * Kolmogorov multiplier \boldsymbol{z}_n
 - Divergence of the ''effective'' nonlinear term $\overline{B}_n({\pmb U}_K^<)$
 - Hölder inequality $\langle fg \rangle \leq \langle f^p \rangle^{1/p} \langle g^q \rangle^{1/q}$ with 1/p + 1/q = 1

Scale locality of information flow Assumption: For FSS model,

Scale-local information flow

Sketch of the proof: Scale locality

1. Decompose the information flow in scale local/nonlocal parts:

$$\begin{split} \dot{I}_{K}^{>} &= \dot{I}_{K}^{>, \text{ local}} + \dot{I}_{K}^{>, \text{ nonlocal}} \\ &= \dot{I}_{[2K, 4K]} \left[\boldsymbol{U}_{[K/2, K]} : \boldsymbol{U}_{[2K, 4K]} \right] \\ &+ \dot{I}_{[2K, 4K]} \left[\boldsymbol{U}_{K/4}^{<} : \boldsymbol{U}_{[2K, 4K]} \mid \boldsymbol{U}_{[K/2, K]} \right] - \dot{I}_{K}^{<} \left[\boldsymbol{U}_{K}^{<} : \boldsymbol{U}_{4K}^{>} \mid \boldsymbol{U}_{[2K, 4K]} \right] \end{split}$$

- 2. Show ultraviolet locality (no direct influence from high-wavenumber modes) $\dot{I}_{K}^{<} \left[\boldsymbol{U}_{K}^{<}: \boldsymbol{U}_{4K}^{>} \mid \boldsymbol{U}_{[2K,4K]} \right] = 0.$
- 3. Show infrared locality (no direct influence from low-wavenumber modes) $\dot{I}_{[2K,4K]} \left[\boldsymbol{U}_{K/4}^{<} : \boldsymbol{U}_{[2K,4K]} \mid \boldsymbol{U}_{[K/2,K]} \right] = 0$

with the Kolmogorov multiplier's assumption.

Ideas for Future Research

Data assimilation (DA) and chaos synchronisation

- Master: $\partial_t u^{\mathrm{m}}(\boldsymbol{x}, t) = \mathsf{Navier-Stokes}$ eq.
- Slave: $\partial_t u^s(x,t) = Navier-Stokes eq.$
 - $\hat{\boldsymbol{u}}^{\mathrm{s}} \coloneqq \sum_{|\boldsymbol{k}| \le k_a} \hat{\boldsymbol{u}}^{\mathrm{m}}(\boldsymbol{k}, t) \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}$
- $u^{\rm s}$ synchronises with $u^{\rm m}$ for $k_a \eta > 0.2$

 η : Kolmogorov scale (Inubushi et al. 2023, Yoshida et al. 2005)

Q. 3 Can we understand the DA threshold $k\eta = 0.2$ by means of "information flow"?

Butterfly effect and spontaneous stochasticity Butterfly effect (sensitivity on initial condition)

...slightly differing initial states can evolve into considerably different states.

- Lorenz EN. 1963. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences*. 20(2):130–41

Spontaneous stochasticity ("real" butterfly effect)

... two states of the system differing initially by a small "observational error" will evolve into two states differing as greatly as randomly chosen states of the system within a finite time interval, which **cannot be lengthened by reducing the amplitude of the initial error**.

- Lorenz EN. 1969. The predictability of a flow which possesses many scales of motion. *Tellus*. 21(3):289–307

Spontaneous stochasticity in turulence

Numerical simulation of shear layer

$$\omega_1\coloneqq U\delta(y), \quad \omega_2\coloneqq [1+\varepsilon\eta(x)]U\delta(y)$$

- $\varepsilon \ll 1$: small parameter, $\eta(x)$: perturbation profile
- Time series of error energy $\mathcal{E}\coloneqq \|u_1-u_2\|$
- 1. ε -dependent exponential divergence
 - Ruelle regime (Ruelle 1979)
- 2. Universal linear growth for $t > \mathcal{O}(10^0)$ independent of initial error
 - Lorenz-Kraichnan-Leith regime

Thalabard S, Bec J, Mailybaev AA. 2020. From the butterfly effect to spontaneous stochasticity in singular shear flows. *Communications Physics*. 3(1):122

References: Bandak (2023), Palmer (2024)

Intrinsic limit of data assimilation in fluctuating hydrodynamics

- Successful DA threshold: $k_a\eta > 0.2$ (Inubushi et al. 2023, Yoshida et al. 2005)
- Thermal fluctuations reach maximum scale in finite time (Bandak et al. 2024)
- How do **deterministic** and **fluctuating** NS differ for DA?
- How do spontaneous stochasticity and DA relate?

Q. 4 Can we seek **universal prediction boundary** of DA from fluctuating hydrodynamics?

April 15, 2025

41/42

Other research ideas on "Information hydrodynamics"

Q. 5 Information flow in 2D turbulence (Nakano et al. 2025)

Q. 6 Information-thermodynamic nature of thermal-noisedriven laminar-turbulent transition (Li et al. 2020)

Q. 7 Validation of the fluctuation theorem in fluctuating Navier-Stokes equations (Yao et al. 2023)

References

Bandak D. 2023. Spontaneous stochasticity and thermal noise in turbulent systems

Bandak D, Goldenfeld N, Mailybaev AA, Eyink G. 2022. Dissipationrange fluid turbulence and thermal noise. *Physical Review E*. 105(6):65113

Bandak D, Mailybaev AA, Eyink GL, Goldenfeld N. 2024. Spontaneous stochasticity amplifies even thermal noise to the largest scales of turbulence in a few eddy turnover times. *Physical Review Letters*. 132(10):104002 Cardesa JI, Vela-Martín A, Jiménez J. 2017. The turbulent cascade in five dimensions. *Science*. 357(6353):782–84

Davidson PA. 2013. *Turbulence in Rotating, Stratified and Electrically Conducting Fluids*. Cambridge University Press

Frisch U, Sulem P-L, Nelkin M. 1978. A simple dynamical model of intermittent fully developed turbulence. *Journal of Fluid Mechanics*. 87(4):719–36

Goto S. 2018. Developed turbulence: On the energy cascade. *Butsuri*. 73(7):457–62

Inubushi M, Saiki Y, Kobayashi MU, Goto S. 2023. Characterizing smallscale dynamics of Navier-Stokes turbulence with transverse Lyapunov exponents: A data assimilation approach. *Physical Review Letters*. 131(25):254001

Johnson PL. 2021. On the role of vorticity stretching and strain selfamplification in the turbulence energy cascade. *Journal of Fluid Mechanics*. 922:A3

Kobayashi H. 2005. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. *Physics of Fluids*. 17(4): Li YC, Ho RD, Berera A, Feng Z. 2020. Superfast amplification and superfast nonlinear saturation of perturbations as a mechanism of turbulence. *Journal of Fluid Mechanics*. 904:A27

Lorenz EN. 1963. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences*. 20(2):130–41

Lorenz EN. 1969. The predictability of a flow which possesses many scales of motion. *Tellus*. 21(3):289–307

Lozano-Durán A, Arranz G. 2022. Information-theoretic formulation of dynamical systems: causality, modeling, and control. *Physical Review Research*. 4(2):23195 Martínez-Sánchez Á, Arranz G, Lozano-Durán A. 2024. Decomposing causality into its synergistic, unique, and redundant components. *Nature Communications*. 15(1):9296

Nakano H, Minami Y, Saito K. 2025. Looking at bare transport coefficients in fluctuating hydrodynamics. *arXiv preprint arXiv:2502.15241*

Palmer T. 2024. The real butterfly effect and maggoty apples. *Physics Today*. 77(5):30–35

Peliti L, Pigolotti S. 2021. *Stochastic Thermodynamics: An Introduction*. Princeton University Press Richardson LF. 1922. Weather Prediction by Numerical Process. Cambridge University Press

Ruelle D. 1979. Microscopic fluctuations and turbulence. *Physics Letters* A. 72(2):81–82

Shiraishi N. 2023. An Introduction to Stochastic Thermodynamics. Springer

Srivastava I, Nonaka AJ, Zhang W, Garcia AL, Bell JB. 2025. Molecular Fluctuations Inhibit Intermittency in Compressible Turbulence. *arXiv preprint arXiv:2501.06396* Tanogami T. 2024. Scale locality of information flow in turbulence. *arXiv preprint arXiv:2407.20572*

Tanogami T, Araki R. 2024a. Information-thermodynamic bound on information flow in turbulent cascade. *Physical Review Research*. 6(1):13090

Tanogami T, Araki R. 2024b. Scale-to-scale information flow amplifies turbulent fluctuations. *arXiv preprint arXiv:2408.03635*

Tanogami T, Van Vu T, Saito K. 2023. Universal bounds on the performance of information-thermodynamic engine. *Physical Review Research*. 5(4):43280

Tasaki H. 2023. A Modern Introduction to Nonequilibrium Statistical Mechanics

- Thalabard S, Bec J, Mailybaev AA. 2020. From the butterfly effect to spontaneous stochasticity in singular shear flows. *Communications Physics*. 3(1):122
- Vela-Martín A. 2021. The synchronisation of intense vorticity in isotropic turbulence. *Journal of Fluid Mechanics*. 913:R8
- Yao H, Zaki TA, Meneveau C. 2023. Entropy and fluctuation relations in isotropic turbulence. *Journal of Fluid Mechanics*. 973:R6

Yoshida K, Yamaguchi J, Kaneda Y. 2005. Regeneration of small eddies by data assimilation in turbulence. *Physical Review Letters*. 94(1):14501 Appendix

Turbulence model which preserves information Reynolds stress model

$$\tau_{ij} = C_1(t) f_1(\boldsymbol{x}, t) \Delta^2 |\boldsymbol{S}| S_{ij} + C_4(t) f_4(\boldsymbol{x}, t) \Delta^2 \left(S_{ik} \Omega_{kj} - \Omega_{ik} S_{kj} \right)$$

where $\boldsymbol{S} \coloneqq (\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^{\mathsf{T}})/2, \boldsymbol{\Omega} \coloneqq (\boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{\nabla} \boldsymbol{u}^{\mathsf{T}})/2, \quad \Delta$: grid resolution

Energy flux

$$\begin{split} \overline{\Gamma} &\coloneqq \left(\overline{u_i u_j} - \overline{u_i u_j} \right) \overline{S}_{ij} \\ &- 2\nu \overline{S}_{ij} \overline{S}_{ij} + \tau_{ij} \overline{S}_{ij} \end{split}$$

Modeling assumption $p(\overline{\Gamma}_1) \approx p(\overline{\Gamma}_2 \gamma) / \gamma$

with scale factor $\gamma \coloneqq \left(\Delta_1 / \Delta_2 \right)^{2/3}$

Lozano-Durán & Arranz (2022)

Information-Preserving SubGrid-Scale (IP-SGS) model

- "Similar PDF" = minimum Kullback-Leibler divergence
- To estimate $C_i(t)$ & $f_i(\boldsymbol{x},t)$, find

$$C_i, f_i = \arg\min_{C_i, f_i} \mathrm{KL}\big(\Gamma_1 \parallel \Gamma_2 \gamma\big)$$

Deficits of IP-SGS

- A priori parameter α for $\gamma \coloneqq \left(\Delta_2 / \Delta_1 \right)^\alpha \text{ exists}$
- No consideration of the nearwall behaviour

Local equilibrium hypothesis in terms of information theory

Instead of PDF similarity, we consider

Local equilibrium hypothesis (LEH)

Instantaneous local balance of energy fluxes at different scales:

$$\left\langle P_{\mathrm{TS}} + \varepsilon_{\mathrm{TS}} \right\rangle_{v} \approx \left\langle P_{\mathrm{GS}} + \varepsilon_{\mathrm{GS}} \right\rangle_{v}$$

GS: Grid Scale at ℓ_1 , TS: Test scale at ℓ_2 , $v\!\!:\!$ small domain

Information-theoretic redifinition of LEH

"Similar PDF" = maximum mutual information $\max I[P_{\rm TS} + \varepsilon_{\rm TS} : P_{\rm GS} + \varepsilon_{\rm GS}]$

Mutual information
$$I[P:Q] \coloneqq \iint dx \, dy \, p(x) \ln \frac{p(x,y)}{p(x)q(y)}$$

Detailed procedure of IP-CSM Spatio-time dependent coefficient

$$f_1(\boldsymbol{x},t) = |F_{\rm CS}|^{\frac{3}{2}}, f_4(\boldsymbol{x},t) = |F_{\rm CS}|^2$$

 \rightarrow applicable to wall-bounded flow

Time-dependent parameter

$$C_1, C_4 = \arg \max_{C_1, C_4} I[\Gamma_1 : \Gamma_2(C_1, C_4)].$$

Summary 11 IP-CSM attains similar performance against existing SGS models.

 $\begin{array}{l} \textbf{Coherent structure} \\ \textbf{function} \quad \textbf{(Kobayashi 2005)} \\ F_{\mathrm{CS}} \coloneqq \frac{\left(\Omega_{ij}\Omega_{ij} - S_{ij}S_{ij}\right)/2}{\left(\Omega_{ij}\Omega_{ij} + S_{ij}S_{ij}\right)/2} \end{array}$

Detailed procedure of IP-CSM

